Cách tính phương sai, độ lệch chuẩn
Công thức tính phương sai, độ lệch chuẩn Toán 10
Phương sai, độ lệch chuẩn là tài liệu do VnDoc biên soạn hướng dẫn cách tính phương sai, cách tính độ lệch chuẩn chi tiết giúp bạn đọc tổng hợp, ôn tập kiến thức đạt hiệu quả cao nhất, mời bạn đọc tham khảo chi tiết và tải về bài viết dưới đây nhé. Chúc các bạn học tập tốt!
- Bài tập công thức lượng giác lớp 10
- Bảng công thức lượng giác dùng cho lớp 10 - 11 - 12
- Giáo án ôn tập hè môn Toán lớp 10
Bản quyền thuộc về VnDoc.
Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.
1. Công thức tính phương sai
a. Phương sai
- Trong thống kê, phương sai được định nghĩa là thước đo độ biến thiên biểu thị khoảng cách các thành viên của một nhóm được lan truyền. Nó tìm ra mức độ trung bình mà mỗi quan sát khác nhau từ giá trị trung bình. Khi phương sai của tập dữ liệu nhỏ, nó cho thấy độ gần của điểm dữ liệu với giá trị trung bình trong khi giá trị phương sai lớn hơn biểu thị rằng các quan sát rất phân tán xung quanh trung bình số học và lẫn nhau.
b. Cách tính phương sai
\({\sigma ^2} = \frac{1}{n}{\sum\limits_{i = 1}^k {\left( {{x_i} - \overline x } \right)} ^2} = \frac{{\sum\limits_{i = 1}^k {{f_i}\left( {{x_i} - \overline x } \right)} }}{N}\)
Với \(\overline x\) là số trung bình của bảng số liệu
n là các số liệu thống kê
2. Công thức tính độ lệch chuẩn
a. Độ lệch chuẩn là gì?
- Độ lệch chuẩn là thước đo định lượng mức độ phân tán của các quan sát trong bộ dữ liệu. Độ lệch chuẩn thấp là một chỉ số về độ gần của điểm số với giá trị trung bình số học và độ lệch chuẩn cao thể hiện; điểm số được phân tán trên một phạm vi giá trị cao hơn.
b. Công thức tính độ lệch chuẩn
\(\sigma = \sqrt {\frac{{\sum\limits_{i = 1}^k {{{\left( {{x_i} - \overline x } \right)}^2}} }}{n}} = \sqrt {\frac{{\sum\limits_{i = 1}^k {{f_i}\left( {{x_i} - \overline x } \right)} }}{N}}\)
3. Phân biệt phương sai và độ lệch chuẩn
Cơ sở để so sánh | Phương sai | Độ lệch chuẩn |
Định nghĩa | Phương sai là một giá trị số mô tả sự thay đổi của các quan sát từ giá trị trung bình số học của nó. | Độ lệch chuẩn là thước đo độ phân tán của các quan sát trong một tập dữ liệu. |
Ý nghĩa | Đây là trung bình của độ lệch bình phương. | Nó là căn bậc trung bình lệch. |
Kí hiệu | Sigma bình phương ( \({\sigma ^2}\)) | Sigma ( \(\sigma\)) |
Thể hiện | Đơn vị bình phương | Các đơn vị giống như các giá trị trong bộ dữ liệu. |
Chỉ ra | Làm thế nào để các cá nhân trong một nhóm được trải ra. | Bao nhiêu quan sát của một tập dữ liệu khác với ý nghĩa của nó |
4. Bài tập ví dụ minh họa
Điểm kiểm tra học kì của một học sinh được thống kê trong bảng dữ liệu sau:
Môn học | Toán | Ngữ Văn | Tiếng Anh | Vật Lý | Hóa Học |
Điểm | 95 | 78 | 84 | 85 | 92 |
Tìm phương sai và độ lệch chuẩn.
\(\sigma = \sqrt {37,2020} \approx 6,1\)Hướng dẫn giải
Điểm trung bình 5 môn học là: \(\overline x = \frac{{95 + 78 + 84 + 85 + 92}}{5} = 86,8\)
x | \(\overline x\) | \(x - \overline x\) | \({\left( {x - \overline x } \right)^2}\) |
95 | 86,8 | 8,2 | 67,24 |
78 | 86,8 | -8,8 | 77,44 |
84 | 86,8 | -2,8 | 7,84 |
85 | 86,8 | -1,8 | 3,24 |
92 | 86,8 | 5,5 | 30,25 |
Phương sai được tính như sau: \({\sigma ^2} = \frac{{67,24 + 77,44 + 7,84 + 3,24 + 30,25}}{5} = 37,202\)
Độ lệch chuẩn là: \(\sigma = \sqrt {37,2020} \approx 6,1\)
Tham khảo thêm: Toán 12 Kết nối tri thức bài 10: Phương sai và độ lệch chuẩn