Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song

Hai đường thẳng chéo nhau và hai đường thẳng song song

Lí thuyết và Bài tập hai đường thẳng chéo nhau và hai đường thẳng song song được VnDoc biên soạn bao gồm hướng dẫn lý thuyết và hướng dẫn giải cho từng bài tập sách giáo khoa và sách bài tập giúp các bạn học sinh luyện tập và hiểu rõ hơn về phần đường thẳng và mặt phẳng trong không gian. Qua đó giúp các bạn học sinh ôn tập, củng cố và rèn luyện thêm kiến thức đã học trong chương trình Toán 11, Mời các bạn học sinh và quý thầy cô cùng tham khảo chi tiết.

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 11, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 11 sau: Nhóm Tài liệu học tập lớp 11. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

A. Lí thuyết Đường thẳng và mặt phẳng trong không gian

I. Vị trí tương đối của hai đường thẳng trong không gian

Cho hai đường thẳng a, b trong không gian, có 2 trường hợp xảy ra:

Trường hợp 1: a, b đồng phẳng

Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song

Đường thẳng a cắt đường thẳng b tại một điểm, a\cap b=\left\{ I \right\}

Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song

Đường thẳng a song song với đường thẳng b, a // b

Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song

Đường thẳng a trùng với đường thẳng b, a\equiv b

\RightarrowHai đường thẳng song song là hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung.

Trường hợp 2: a, b không đồng phẳng

Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song songVí dụ 1

Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song

Ví dụ 2

Theo hình vẽ ở trên ta nói a, b chéo nhau hoặc a chéo với b

Ở ví dụ 2 các cặp cạnh chéo nhau là: AC và BD, AB và CD, …

II. Tính chất của hai đường thẳng song song

Dựa vào tiên đề Ơ – clít về hai đường thẳng song song trong mặt phẳng ta có:

Định lí 1: Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng cho trước.

Định lí 2: (giao tuyến của ba mặt phẳng) Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau.

\RightarrowHệ quả: Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

Định lí 3: Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.

B. Giải Toán 11 Bài 2

Trong Sách giáo khoa Toán lớp 11, các bạn học sinh chắc hẳn sẽ gặp những bài toán khó, phải tìm cách giải quyết. Hiểu được điều này, VnDoc đã tổng hợp và gửi tới các bạn học sinh lời giải và đáp án chi tiết cho các bài tập trong Sách giáo khoa Toán lớp 11. Mời các bạn học sinh tham khảo:

C. Giải Toán 11 bài 2 SBT

Sách bài tập Toán 11 tổng hợp các bài Toán từ cơ bản tới nâng cao, đi kèm với đó là đáp án. Tuy nhiên, nhiều đáp án không được giải chi tiết khiến cho các bạn học sinh gặp nhiều khó khăn khi tiếp xúc với dạng bài mới. VnDoc đã tổng hợp và gửi tới các bạn học sinh lời giải và đáp án chi tiết cho từng dạng bài tập trong Sách bài tập để các bạn có thể nắm vững, hiểu rõ hơn về dạng bài tập này. Mời các bạn học sinh tham khảo:

------------------------------------

Trên đây VnDoc.com đã giới thiệu tới bạn đọc tài liệu: Toán 11 bài 2: Hai đường thẳng song song và hai đường thẳng chéo nhau. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Hóa học lớp 10, Giải bài tập Hóa học lớp 11, Hóa học lớp 12, Thi THPT Quốc gia môn Văn, Thi THPT Quốc gia môn Lịch sử, Thi THPT Quốc gia môn Địa lý, Thi THPT Quốc gia môn Toán, đề thi học kì 1 lớp 11, đề thi học kì 2 lớp 11 mà VnDoc tổng hợp và đăng tải.

Đánh giá bài viết
1 491
0 Bình luận
Sắp xếp theo
Toán lớp 11 Xem thêm