Toán 11 Bài 4: Cấp số nhân
Cấp số nhân Toán 11
Toán 11 Bài 4: Cấp số nhân được VnDoc biên soạn bao gồm hướng dẫn lý thuyết và đáp án chi tiết cho từng bài tập giúp các bạn học sinh luyện tập và hiểu rõ hơn về công thức cấp số nhân, cách tính tổng cấp số nhân, tổng dãy số. Qua đó giúp các bạn học sinh ôn tập, củng cố và rèn luyện thêm kiến thức đã học trong chương trình Toán 11, Mời các bạn học sinh và quý thầy cô cùng tham khảo chi tiết.
Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 11, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 11 sau: Nhóm Tài liệu học tập lớp 11. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.
A. Lí thuyết Cấp số nhân
1.Cấp số cộng là gì?
Định nghĩa: Dãy số \(\left( {{U}_{n}} \right)\) được xác định bởi: \(\left( {{U}_{n}} \right)=\left\{ \begin{matrix} {{u}_{1}}=a \\ {{u}_{n+1}}={{u}_{n}}.q \\ \end{matrix}\left( n\in \mathbb{N}* \right) \right.\) thì dãy số này được gọi là cấp số nhân, q là công bội.
Như vậy ta có thể hiểu cấp số nhân có dạng: \(a,aq,a{{q}^{2}},a{{q}^{3}},a{{q}^{4}},...\) với a là số hạng đầu tiên và q là công bội.
Ví dụ: Cấp số nhân có số hạng đầu bằng 2 và công sai bằng 2 là \(2,4,8,16,32,64,128,....\)
2. Số hạng tổng quát
Cấp số nhân bắt đầu là phần tử \({{u}_{1}}\) và công bội q thì số hạng thứ n của cấp số cộng được tính theo công thức: \({{u}_{n+1}}=a.{{q}^{n}},n\ge 1\)
\(\Rightarrow q=\sqrt[n-1]{\frac{{{a}_{n}}}{a}},n\ge 1\)
3.Tính chất
Ba số hạng \({{u}_{n-1}},{{u}_{n}},{{u}_{n+1}}\) là 3 số hạng liên tiếp của cấp số nhân khi \({{u}_{n}}^{2}={{u}_{n-1}}.{{u}_{n+1}}\)với \(n\ge 1\)
4. Tổng của một cấp số nhân
Tổng số hạng đầu của cấp số nhân :
\(\sum\limits_{k=0}^{n}{a{{q}^{k}}=a{{q}^{0}}+a{{q}^{1}}+a{{q}^{2}}+a{{q}^{3}}+...+a{{q}^{n}}}\)
Nhân cả 2 vế với: \(\left( 1-q \right)\)
\(\Leftrightarrow \left( 1-q \right){{S}_{n+1}}=\left( 1-q \right)\sum\limits_{k=0}^{n}{a{{q}^{k}}=a-a{{q}^{n+1}}}\)
Vì tất cả các số hạng khác đã loại trừ lẫn nhau
\(\Rightarrow {{S}_{n+1}}=\sum\limits_{k=0}^{n}{a{{q}^{k}}=\frac{a\left( 1-{{q}^{n+1}} \right)}{1-q}}\)
5.Chú ý
a. Dãy số \(\left( {{U}_{n}} \right)\) là một cấp số nhân, công sai d \(\Leftrightarrow \frac{{{u}_{n+1}}}{{{u}_{n}}}=q\) không phụ thuộc vào n
b. Ba số a, b, c lập thành một cấp số nhân \(\Leftrightarrow {{b}^{2}}=a.c\)
c. Để xác định một cấp số nhân, ta cần xác định số hạng đầu và công bội. Do đó, ta thường biểu diễn giả thiết bài toán qua \({{u}_{1}},q\)
B. Giải bài tập Toán 11
Trong Sách giáo khoa Toán lớp 11, các bạn học sinh chắc hẳn sẽ gặp những bài toán khó, phải tìm cách giải quyết. Hiểu được điều này, VnDoc đã tổng hợp và gửi tới các bạn học sinh lời giải và đáp án chi tiết cho các bài tập trong Sách giáo khoa Toán lớp 11. Mời các bạn học sinh tham khảo:
C. Giải Vở Bài tập Toán 11
Sách bài tập Toán 11 tổng hợp các bài Toán từ cơ bản tới nâng cao, đi kèm với đó là đáp án. Tuy nhiên, nhiều đáp án không được giải chi tiết khiến cho các bạn học sinh gặp nhiều khó khăn khi tiếp xúc với dạng bài mới. VnDoc đã tổng hợp và gửi tới các bạn học sinh lời giải và đáp án chi tiết cho từng dạng bài tập trong Sách bài tập để các bạn có thể nắm vững, hiểu rõ hơn về dạng bài tập này. Mời các bạn học sinh tham khảo:
D. Bài tập Toán 11
Để ôn tập lại kiến thức cũng như rèn luyện nâng cao hơn về bài tập của bài Dãy số này, VnDoc xin gửi tới các bạn học sinh Tài liệu Cấp số nhân bài tập cơ bản cũng như các bài tập nâng cao do VnDoc biên soạn. Qua đó sẽ giúp các bạn học sinh hiểu sâu hơn và nắm rõ hơn lý thuyết cũng như bài tập của bài học này. Mời các bạn học sinh tham khảo:
- Cấp số nhân
- Công thức giải nhanh cấp số cộng và cấp số nhân
- 80 câu hỏi trắc nghiệm cấp số cộng, cấp số nhân
-------------------------------------------------
Trên đây là Cấp số nhân Toán 11 VnDoc.com giới thiệu tới quý thầy cô và bạn đọc. Ngoài ra VnDoc mời độc giả tham khảo thêm tài liệu ôn tập một số môn học: Toán lớp 11, Tiếng anh lớp 11, Vật lí lớp 11, Ngữ văn lớp 11,...