Tài liệu ôn thi THPT Quốc gia môn Toán: Tuyển chọn 50 bài toán Xác suất điển hình

Tuyển chọn 50 bài toán và đáp án phần Xác suất

Tài liệu ôn thi THPT Quốc gia môn Toán: Tuyển chọn 50 bài toán Xác suất điển hình được thầy giáo Nguyễn Hữu Biển biên tập, đây là tài liệu ôn thi môn Toán hữu ích dành cho các bạn thí sinh lớp 12, những bạn chuẩn bị bước vào kì thi THPT Quốc gia 2021, luyện thi Đại học, Cao đẳng hiệu quả. Mời các bạn tham khảo chi tiết tại đây nhé.

VnDoc.com xin gửi tới bạn đọc bài viết Tài liệu ôn thi THPT Quốc gia môn Toán: Tuyển chọn 50 bài toán Xác suất điển hình để bạn đọc cùng tham khảo. Bài viết được tổng hợp gồm có 50 bài toán về phần xác suất. Bài tập có đáp án và lời giải chi tiết kèm theo. Thông qua bài viết bạn đọc có thể luyện tập được cách tính xác suất. Mời các bạn cùng tham khảo chi tiết và tải về tại đây nhé.

Bài 1: Một cái hộp đựng 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ cái hộp đó. Tính xác suất để viên bi được lấy lần thứ 2 là bi xanh.

Hướng dẫn

* Số cách lấy lần lượt 2 viên bi từ hộp là 10.9 = 90 (cách)

* Nếu lần 1 lấy được bi đỏ và lần 2 lấy được bi xanh thì có 6.4 = 24 (cách)

* Nếu lần 1 lấy được bi xanh và lần 2 cũng là bi xanh thì có 4.3 = 12 (cách)

Suy ra xác suất cần tìm là:

Bài tập và lý thuyết ôn thi THPT Quốc gia môn Toán

Bài 2: Một hộp đựng 10 viên bi đỏ, 8 viên bi vàng và 6 viên bi xanh. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để các viên bi lấy được đủ cả 3 màu.

Hướng dẫn

Tổng số viên bi trong hộp là 24. Gọi Ω là không gian mẫu.

Lấy ngẫu nhiên 4 viên trong hộp ta có C424 cách lấy hay n(Ω ) = C424.

Gọi A là biến cố lấy được các viên bi có đủ cả 3 màu. Ta có các trường hợp sau:

+) 2 bi đỏ, 1 bi vàng và 1 bi xanh: có C210C18C16 = 2160 cách

+) 1 bi đỏ, 2 bi vàng và 1 bi xanh: có C110C28C16 = 1680 cách

+) 1 bi đỏ, 1 bi vàng và 2 bi xanh: có C110C18C26 = 1200 cách

Do đó, n(A) = 5040

Vậy, xác suất biến cố A là

Bài tập và lý thuyết ôn thi phần Xác Suất Toán

Bài 3: Từ các chữ số của tập T = {0;1;2;3;4;5} , người ta ghi ngẫu nhiên hai số tự nhiên có ba chữ số khác nhau lên hai tấm thẻ. Tính xác suất để hai số ghi trên hai tấm thẻ đó có ít nhất một số chia hết cho 5.

Hướng dẫn

Có 5.A25 = 100 số tự nhiên có 3 chữ số khác nhau

Có A25 + 4.A14 = 36 số tự nhiên có 3 chữ số khác nhau và chia hết cho 5.

+ Có 64 số tự nhiên có 3 chữ số khác nhau và không chia hết cho 5.

+ n(Ω) = C1100.C199 = 9900

+ Gọi A là biến cố: "Trong hai số được ghi trên 2 tấm thẻ có ít nhất 1 số chia hết cho 5"

Ta có: n(A) = C136.C164 + C136.C135 = 3564

Bài tập và lý thuyết ôn thi phần Xác Suất Toán

Bài 4: Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 5 tấm thẻ. Tính xác suất để trong 5 tấm thẻ được chọn ra có 3 tấm thẻ mang số lẻ, 2 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ mang số chia hết cho 4.

(Còn tiếp)

Trên đây VnDoc.com vừa giới thiệu tới các bạn Tài liệu ôn thi THPT Quốc gia môn Toán: Tuyển chọn 50 bài toán Xác suất điển hình, mong rằng qua bài viết này các bạn có thể học tập tốt hơn môn Toán lớp 12. Mời các bạn cùng tham khảo thêm các môn Ngữ văn 12, tiếng Anh 12, đề thi học kì 1 lớp 12, đề thi học kì 2 lớp 12...

Mời bạn đọc cùng tham gia nhóm Tài liệu học tập lớp 12 để có thêm tài liệu học tập nhé

Đánh giá bài viết
1 2.764
0 Bình luận
Sắp xếp theo
Môn Toán khối D Xem thêm