Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Bài tập Toán 12 Tìm tiệm cận của đồ thị hàm số

Đóng
Bạn đã dùng hết 2 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Tìm tiệm cận của đồ thị hàm số cho bởi công thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

  • Số câu hỏi: 33 câu
  • Số điểm tối đa: 33 điểm
Bắt đầu làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Tìm số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x + 3}{\sqrt{9 -
x^{2}}}y=x+39x2 có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = ( -
3;3)\overset{}{ightarrow}không tồn tại \ \lim_{x\  ightarrow \  - \ \infty}y\lim_{x\  ightarrow \  + \ \infty}y\
.

    Do đó đồ thị hàm số không có tiệm cận ngang.

    Ta có:

    \lim_{x ightarrow - 3^{+}}\frac{x +
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x + 3}{\sqrt{3
- x}.\sqrt{3 + x}}= \lim_{x ightarrow - 3^{+}}\frac{\sqrt{x +3}}{\sqrt{3 - x}} = 0 ightarrow x = - 3 không là TCĐ;

    \lim_{x ightarrow 3^{-}}\frac{x +
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x + 3}{\sqrt{3 -
x}.\sqrt{3 + x}}= \lim_{x ightarrow 3^{-}}\frac{\sqrt{x + 3}}{\sqrt{3
- x}} = + \infty ightarrow x = 3 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng một tiệm cận.

  • Câu 2: Thông hiểu

    Xác định tọa độ giao điểm

    Tìm tọa độ giao điểm của đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 2}{x +
2}.y=x2x+2.

    TXĐ D\mathbb{= R}\backslash\left\{ - 2
ight\}.

    Dễ thấy đồ thị hàm số có TCĐ: x = -
2 và TCN: y = 1.

    Suy ra giao điểm của hai đường tiệm cận là ( - 2\ ;\ 1).

  • Câu 3: Thông hiểu

    Chọn đáp án đúng

    Đồ thị hàm số y = \sqrt{x^{2} + 2x + 3} -
xy=x2+2x+3x có bao nhiêu đường tiệm cận ngang?

    Ta có:

    * \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + 2x + 3} - x ight) = \lim_{x ightarrow + \infty}\left(
\frac{2x + 3}{\sqrt{x^{2} + 2x + 3} + x} ight)

    = \lim_{x ightarrow + \infty}\left(
\frac{2 + \frac{3}{x}}{\sqrt{1 + \frac{2}{x} + \frac{3}{x^{2}}} + 1}
ight) = 1

    * \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 2x + 3} - x ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2}\left( 1 + \frac{2}{x} + \frac{3}{x^{2}} ight)} - x
ight)

    = \lim_{x ightarrow - \infty}x\left( -
\sqrt{1 + \frac{2}{x} + \frac{3}{x^{2}}} - 1 ight) = +
\infty

    Vậy đồ thị có một đường tiệm cận ngang là y = 1.

  • Câu 4: Thông hiểu

    Chọn phương án đúng

    Đồ thị hàm số y = \frac{\sqrt{2 - x^{2}}
- 1}{x^{2} - 3x + 2}y=2x21x23x+2 có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = \left\lbrack - \sqrt{2};\sqrt{2}
ightbrack\backslash\left\{ 1 ight\} suy ra không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 1^{+}}\frac{\sqrt{2 - x^{2}} - 1}{x^{2} - 3x + 2}
= 0 \\
\lim_{x ightarrow 1^{-}}\frac{\sqrt{2 - x^{2}} - 1}{x^{2} - 3x + 2} =
0 \\
\end{matrix} ight.. Do đó đồ thị hàm số không có tiệm cận đứng.

    Vậy đồ thị hàm số không có tiệm cận.

  • Câu 5: Thông hiểu

    Chọn mệnh đề đúng

    Cho hàm số y = \frac{x^{2} - x -
2}{\sqrt{x^{4} - 4x^{2} + 4}}y=x2x2x44x2+4. Mệnh đề nào sau đây là đúng?

    TXĐ: D\mathbb{= R}\backslash\left\{ \pm
\sqrt{2} ight\}. Ta có:

    \lim_{x ightarrow \pm \infty}y =
1\overset{}{ightarrow}\ \ y = 1 là TCN;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ \left( \sqrt{2} ight)^{+}}y = - \infty \\
\lim_{x ightarrow \ \left( \sqrt{2} ight)^{-}}y = - \infty \\
\end{matrix} ight.\ \overset{}{ightarrow}\ \ x = \sqrt{2} là TCĐ;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ \left( - \sqrt{2} ight)^{+}}y = + \infty \\
\lim_{x ightarrow \ \left( - \sqrt{2} ight)^{-}}y = + \infty \\
\end{matrix} ight.\ \overset{}{ightarrow}\ \ x = - \sqrt{2} là TCĐ.

    Vậy hàm số có hai tiệm cận đứng và một tiệm cận ngang.

  • Câu 6: Thông hiểu

    Tìm tất cả các đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x +
1}{\sqrt{4x^{2} + 2x + 1}}y=x+14x2+2x+1 có tất cả bao nhiêu đường tiệm cận?

    Ta có 4x^{2} + 2x + 1 > 0,\ \ \forall
x\mathbb{\in R\ \ }\overset{}{ightarrow} TXĐ của hàm số D\mathbb{= R}.

    Do đó đồ thị hàm số không có tiệm cận đứng.

    Xét \lim_{x ightarrow + \infty}\frac{x
+ 1}{\sqrt{4x^{2} + 2x + 1}} = \frac{1}{2}\ \ \overset{}{ightarrow}\ \
y = \frac{1}{2} là TCN;

    \lim_{x ightarrow - \infty}\frac{x +
1}{\sqrt{4x^{2} + 2x + 1}} = - \frac{1}{2}\ \ \overset{}{ightarrow}\ \
y = - \frac{1}{2} là TCN.

    Vậy đồ thị hàm số có đúng hai đường tiệm cận.

  • Câu 7: Thông hiểu

    Tìm tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} - 3x +
2}{\sqrt[3]{x^{4}} - 1}y=x23x+2x431 có bao nhiêu đường tiệm cận đứng?

    TXĐ: D\mathbb{= R}\backslash\left\{ - 1\
;1 ight\}. Ta có:

    \lim_{x ightarrow 1^{-}}\frac{x^{2} -
3x + 2}{\sqrt[3]{x^{4}} - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} -
3x + 2}{\sqrt[3]{x^{4}} - 1} = - \frac{3}{4} ightarrow x = 1 không là TCĐ.

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 1)^{+}}\frac{x^{2} - 3x + 2}{\sqrt[3]{x^{4}} -
1} = - \infty \\
\lim_{x ightarrow \ ( - 1)^{-}}\frac{x^{2} - 3x + 2}{\sqrt[3]{x^{4}} -
1} = + \infty \\
\end{matrix} ight.\  ightarrow x = - 1 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận đứng.

  • Câu 8: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = f(x)y=f(x)\lim_{x ightarrow + \infty}f(x) = 1limxightarrow+f(x)=1\lim_{x ightarrow - \infty}f(x) = -
1limxightarrowf(x)=1. Khẳng định nào sau đây là khẳng định đúng?

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow + \infty}f(x) =
1\overset{}{ightarrow}y = 1 là TCN.

    \lim_{x ightarrow - \infty}f(x) = -
1\overset{}{ightarrow}y = - 1 là TCN.

  • Câu 9: Thông hiểu

    Tìm mệnh đề đúng

    Cho hàm số y = \frac{x - 1}{\sqrt{2x^{2}
- 1} - 1}y=x12x211. Gọi d,nd,n lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. Mệnh đề nào sau đây là đúng?

    Để căn thức có nghĩa khi 2x^{2} - 1 \geq
0 \Leftrightarrow x \in \left( - \infty; - \frac{1}{\sqrt{2}}
ightbrack \cup \left\lbrack \frac{1}{\sqrt{2}}; + \infty
ight)

    Xét \sqrt{2x^{2} - 1} - 1 =
0

    \Leftrightarrow \sqrt{2x^{2} - 1} = 1
\Leftrightarrow 2x^{2} - 1 = 1

    \Leftrightarrow x = \pm 1 \in \left( -
\infty; - \frac{1}{\sqrt{2}} ightbrack \cup \left\lbrack
\frac{1}{\sqrt{2}}; + \infty ight)

    Do đó tập xác định của hàm số:

    D = \left(
- \infty; - \frac{1}{\sqrt{2}} ightbrack \cup \left\lbrack
\frac{1}{\sqrt{2}}; + \infty ight)\backslash\left\{ - 1;1
ight\}.

    Ta có

    \lim_{x ightarrow - 1}y = \lim_{x
ightarrow - 1}\frac{(x - 1)\left( \sqrt{2x^{2} - 1} + 1
ight)}{2\left( x^{2} - 1 ight)}= \lim_{x ightarrow -1}\frac{\sqrt{2x^{2} - 1} + 1}{2(x + 1)} = \infty ightarrow x = -1 là TCĐ;

    \lim_{x ightarrow 1}y = \lim_{x
ightarrow 1}\frac{(x - 1)\left( \sqrt{2x^{2} - 1} + 1 ight)}{2\left(x^{2} - 1 ight)}= \lim_{x ightarrow 1}\frac{\sqrt{2x^{2} - 1} +
1}{2(x + 1)} = \frac{1}{2} ightarrow x = 1 không là TCĐ;

    \lim_{x ightarrow + \infty}\frac{x -
1}{\sqrt{2x^{2} - 1} - 1} = \frac{1}{\sqrt{2}} ightarrow y =
\frac{1}{\sqrt{2}} là TCN;

    \lim_{x ightarrow - \infty}\frac{x -
1}{\sqrt{2x^{2} - 1} - 1} = - \frac{1}{\sqrt{2}} ightarrow y = -
\frac{1}{\sqrt{2}} là TCN.

    Vậy d = 1,n = 2 ightarrow n + d =
3.

  • Câu 10: Thông hiểu

    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} + 1}{x^{2}
- |x| - 2}y=x2+1x2|x|2 có tất cả bao nhiêu đường tiệm cận?

    Ta có \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{x^{2} + 1}{x^{2} - |x| - 2} =
1\overset{}{ightarrow}y = 1 là TCN.

    Xét phương trình x^{2} - |x| - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
\lim_{x ightarrow 2^{+}}y = \lim_{x ightarrow 2^{+}}\frac{x^{2} +
1}{x^{2} - |x| - 2} = + \infty \\
\lim_{x ightarrow 2^{-}}y = \lim_{x ightarrow 2^{-}}\frac{x^{2} +
1}{x^{2} - |x| - 2} = - \infty \\
\end{matrix} ight.\ \overset{}{ightarrow}x = 2 là TCĐ;

    \left\{ \begin{matrix}
\lim_{x ightarrow - 2^{+}}y = \lim_{x ightarrow - 2^{+}}\frac{x^{2}
+ 1}{x^{2} - |x| - 2} = - \infty \\
\lim_{x ightarrow - 2^{-}}y = \lim_{x ightarrow - 2^{-}}\frac{x^{2}
+ 1}{x^{2} - |x| - 2} = + \infty \\
\end{matrix} ight.\ \overset{}{ightarrow}x = - 2 là TCĐ.

    Vậy đồ thị hàm số đã cho có ba đường tiệm cận.

  • Câu 11: Thông hiểu

    Xác định số đường tiệm cận của đồ thị hàsố

    Đồ thị hàm số y = \left\{ \begin{matrix}
\dfrac{\sqrt{x^{2} + 1}}{x} & khix \geq 1 \\
\dfrac{2x}{x - 1} & khix < 1 \\
\end{matrix} ight.Extra \left or missing \right có tất cả bao nhiêu đường tiệm cận?

    Ta có:

    \lim_{x ightarrow 1^{-}}y = \lim_{x
ightarrow 1^{-}}\frac{2x}{x - 1} = - \infty\overset{}{ightarrow}\ \
x = 1 là TCĐ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{2x}{x - 1} = 2\overset{}{ightarrow}\ \ y =
2 là TCN;

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\sqrt{x^{2} + 1}}{x} =
1\overset{}{ightarrow}\ \ y = 1 là TCN.

    Vậy đồ thị hàm số có đúng ba tiệm cận.

  • Câu 12: Thông hiểu

    Xác định số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x}y=1x2x2+2x có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = \lbrack - 1\ ;\ 0) \cup (0\ ;\
1brack\ \ \overset{}{ightarrow} không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 0^{+}}\frac{\sqrt{1 - x^{2}}}{x^{2} + 2x} = +
\infty \\
\lim_{x ightarrow \ 0^{-}}\frac{\sqrt{1 - x^{2}}}{x^{2} + 2x} = -
\infty \\
\end{matrix} ight.\ \overset{}{ightarrow}\ \ x = 0 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận.

  • Câu 13: Thông hiểu

    Chọn phương án đúng

    Đồ thị hàm số y = \frac{\sqrt{x +
1}}{x^{2} - 1}y=x+1x21 có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = ( - 1;1) \cup (1; +
\infty). Ta có:

    \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {x + 1} }}{{\left( {x + 1} ight)\left( {x - 1} ight)}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{\sqrt {x + 1} \left( {x - 1} ight)}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\sqrt {x + 1} }}{{\left( {x + 1} ight)\left( {x - 1} ight)}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{\sqrt {x + 1} \left( {x - 1} ight)}} =  - \infty  \hfill \\ 
\end{matrix}  ight.\to x = 1 là TCĐ;

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{\sqrt{x + 1}}{(x + 1)(x - 1)}=
\lim_{x ightarrow ( - 1)^{+}}\frac{1}{(x - 1)\sqrt{x + 1}} = - \inftyightarrow x = - 1 là TCĐ;

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\sqrt{x + 1}}{x^{2} - 1}= \lim_{xightarrow + \infty}\frac{\sqrt{\frac{1}{x^{3}} + \frac{1}{x^{4}}}}{1 -\frac{1}{x^{2}}} = 0ightarrow y = 0 là TCN.

    Vậy đồ thị hàm số có đúng ba đường tiệm cận.

  • Câu 14: Thông hiểu

    Xác định số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{x^{2} + 2x
+ 1}}{x^{2} - 1}y=x2+2x+1x21 có tất cả bao nhiêu đường tiệm cận?

    Ta có y = \frac{\sqrt{x^{2} + 2x +
1}}{x^{2} - 1} = \frac{|x + 1|}{x^{2} - 1} = \left\{ \begin{gathered}
  \frac{1}{{x - 1}}{\text{   }}khi{\text{ }}x >  - 1,x e 1 \hfill \\
   - \frac{1}{{x - 1}}{\text{ }}khi{\text{ }}x <  - 1 \hfill \\ 
\end{gathered}  ight.

    Dễ thấy đồ thị hàm số có tiệm cận đứng x
= 1.

    \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{\sqrt{x^{2} + 2x + 1}}{x^{2} - 1} =
0 ightarrow y = 0 là TCN.

    Vậy đồ thị hàm số có đúng hai tiệm cận.

  • Câu 15: Thông hiểu

    Chọn đáp án thích hợp

    Đồ thị hàm số y = \frac{\sqrt{16 -
x^{2}}}{x^{2} - 16}y=16x2x216 có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = ( - 4;4) suy ra không tồn tại \ \lim_{x\  ightarrow \  - \
\infty}y\lim_{x\  ightarrow
\  + \ \infty}y\ .

    Do đó đồ thị hàm số không có tiệm cận ngang.

    Ta có:

    \lim_{x ightarrow -
4^{+}}\frac{\sqrt{16 - x^{2}}}{x^{2} - 16} = \lim_{x ightarrow -
4^{+}}\left( \frac{- 1}{\sqrt{16 - x^{2}}} ight) = - \infty
ightarrow x = - 4 là TCĐ;

    \lim_{x ightarrow 4^{-}}\frac{\sqrt{16
- x^{2}}}{x^{2} - 16} = \lim_{x ightarrow 4^{-}}\left( \frac{-
1}{\sqrt{16 - x^{2}}} ight) = - \infty ightarrow x = 4 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng hai tiệm cận.

  • Câu 16: Thông hiểu

    Chọn hàm số thích hợp với yêu cầu

    Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?

    Nhận thấy các đáp án y = \frac{1}{x^{4} +
1}.y = \frac{1}{x^{2} +
1}.;y = \frac{1}{x^{2} + x +
1}. là các hàm số có TXĐ: D\mathbb{= R} nên không có TCĐ.

    Dùng phương pháp loại trừ thì y =
\frac{1}{\sqrt{x}}. đúng.

    (Thật vậy; hàm số y =
\frac{1}{\sqrt{x}}\lim_{x
ightarrow 0^{+}}y = \lim_{x ightarrow 0^{+}}\frac{1}{\sqrt{x}} = +
\infty\ \ \overset{}{ightarrow}\ \ x = 0 là TCĐ)

  • Câu 17: Thông hiểu

    Tìm số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x - 2}{x^{2} -
9}y=x2x29 có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D\mathbb{= R}\backslash\left\{ \pm 3
ight\}. Ta có:

    \lim_{x ightarrow 3^{-}}y = \lim_{x
ightarrow 3^{-}}\frac{x - 2}{x^{2} - 9} = - \infty;\lim_{x
ightarrow 3^{+}}y = \lim_{x ightarrow 3^{+}}\frac{x - 2}{x^2 - 9}
= + \infty\overset{}{ightarrow}x = 3 là TCĐ;

    \lim_{x ightarrow - 3^{-}}y = \lim_{x
ightarrow - 3^{-}}\frac{x - 2}{x^{2} - 9} = + \infty;\lim_{x
ightarrow - 3^{+}}y = \lim_{x ightarrow - 3^{+}}\frac{x - 2}{x^{2} -
9} = - \infty\overset{}{ightarrow}x = - 3 TCĐ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{\frac{1}{x} - \frac{2}{x^{2}}}{1 -
\frac{9}{x^{2}}} = 0;\lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\frac{1}{x} - \frac{2}{x^{2}}}{1 -
\frac{9}{x^{2}}} = 0\overset{}{ightarrow}y = 0 là TCN.

    Vậy đồ thị hàm số có đúng ba tiệm cận

  • Câu 18: Thông hiểu

    Tìm số tiệm cận ngang của đồ thị hàm số

    Đồ thị hàm số y = \frac{2x + 1}{3x -
\sqrt{x - 1}}y=2x+13xx1 có bao nhiêu đường tiệm cận ngang?

    TXĐ: D = \lbrack 1\ ; + \infty)\
.

    Do đó ta chỉ xét 1 trường hợp như sau:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{2x + 1}{3x - \sqrt{x - 1}}= \lim_{x
ightarrow + \infty}\frac{2 + \frac{1}{x}}{3 - \sqrt{\frac{1}{x} -\frac{1}{x^{2}}}} = \frac{2}{3} ightarrow y = \frac{2}{3} là TCN.

    Vậy đồ thị hàm số có đúng một TCN.

  • Câu 19: Nhận biết

    Chọn kết luận đúng

    Cho hàm số f(x)f(x) có tập xác định là D = ( - 3;3)\backslash\left\{ - 1;1
ight\}Extra \left or missing \right , liên tục trên các khoảng của tập DD và có

    \begin{matrix}
\begin{matrix}
\lim_{x ightarrow ( - 3)^{+}}f(x) = - \infty; \\
\lim_{x ightarrow 1^{-}}f(x) = + \infty; \\
\end{matrix} & \begin{matrix}
\lim_{x ightarrow ( - 1)^{-}}f(x) = - \infty; \\
\lim_{x ightarrow 1^{+}}f(x) = + \infty; \\
\end{matrix} & \begin{matrix}
\lim_{x ightarrow ( - 1)^{+}}f(x) = - \infty; \\
\lim_{x ightarrow 3^{-}}f(x) = + \infty. \\
\end{matrix} \\
\end{matrix}limxightarrow(3)+f(x)=;limxightarrow1f(x)=+;limxightarrow(1)f(x)=;limxightarrow1+f(x)=+;limxightarrow(1)+f(x)=;limxightarrow3f(x)=+.

    Khẳng định nào sau đây là khẳng định đúng?

    Câu đúng cần tìm là:

    Đồ thị hàm số có đúng bốn TCĐ là các đường thẳng x = \pm 1x
= \pm 3

  • Câu 20: Thông hiểu

    Chọn khẳng định đúng

    Gọi n,\ dn, d lần lượt là số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{1 - x}}{(x - 1)\sqrt{x}}.y=1x(x1)x. Khẳng định nào sau đây là đúng?

    TXĐ: D = (0;1) suy ra không tồn tại \ \lim_{x\  ightarrow \  - \
\infty}y\lim_{x\  ightarrow
\  + \ \infty}y\ .

    Do đó đồ thị hàm số không có tiệm cận ngang.

    Xét phương trình (x - 1)\sqrt{x} = 0
\leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.\ . Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1 -
x}}{(x - 1)\sqrt{x}} = \infty\overset{}{ightarrow}x = 0 là TCĐ;

    \lim_{x ightarrow 1 -}\frac{\sqrt{1 -
x}}{(x - 1)\sqrt{x}} = \lim_{x ightarrow 1^{-}}\frac{- 1}{\sqrt{x -
1}\sqrt{x}} = \infty\overset{}{ightarrow}x = 1 là TCĐ.

    Vậy n = 0;d = 2.

  • Câu 21: Thông hiểu

    Chọn phương án thích hợp

    Đồ thị hàm số y = \frac{x +
1}{\sqrt{x^{2} - 1}}y=x+1x21 có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = ( - \infty\ ; - 1) \cup (1\ ; +
\infty).Ta có:

    \lim_{x ightarrow + \infty}y =
1\overset{}{ightarrow}\ \ y = 1 là tiệm cận ngang và \lim_{x ightarrow - \infty}f(x) = - 1
ightarrow y = - 1 là tiệm cận ngang

    \lim_{x ightarrow \ ( - 1)^{-}}y =
\lim_{x ightarrow \ ( - 1)^{-}}\frac{- ( - x - 1)}{\sqrt{( - x - 1)(1
- x)}}= \lim_{x ightarrow \ ( - 1)^{-}}\frac{- \sqrt{- x -1}}{\sqrt{1 - x}} = 0 ightarrow x = - 1 không là tiệm cận đứng

    \lim_{x ightarrow \ 1^{+}}y = \lim_{x
ightarrow \ 1^{+}}\frac{x + 1}{\sqrt{x^{2} - 1}} = +
\infty\overset{}{ightarrow}\ \ x = 1 là tiệm cận đứng.

    Vậy đồ thị hàm số có đúng ba tiệm cận.

  • Câu 22: Thông hiểu

    Chọn câu đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    “Đồ thị hàm số y = f(x) có tiệm cận ngang y = 1 khi và chỉ khi \lim_{x ightarrow + \infty}f(x) =
1\lim_{x ightarrow -
\infty}f(x) = 1“ sai vì chỉ cần một trong hai giới hạn \lim_{x ightarrow - \infty}f(x) = 1 hoặc \lim_{x ightarrow + \infty}f(x) =
1 tồn tại thì đã suy ra được tiệm cận ngang là y = 1.

    “Nếu hàm số y = f(x) không xác định tại x_{0} thì đồ thị hàm số y = f(x) có tiệm cận đứng x = x_{0}“ sai, ví dụ hàm số y = \sqrt{x^{3} - 1} không xác định tại x = - 2 nhưng \lim_{x ightarrow \ ( - 2)^{-}}f(x)\lim_{x ightarrow \ ( -
2)^{+}}f(x) không tiến đến vô cùng nên x = - 2 không phải là tiệm cận đứng của đồ thị hàm số.

    “Đồ thị hàm số y = f(x) có tiệm cận đứng x = 2 khi và chỉ khi \lim_{x ightarrow 2^{+}}f(x) = + \infty\lim_{x ightarrow 2^{-}}f(x) = +
\infty“ sai vì chỉ cần tồn tại một trong bốn giới hạn sau:

    \lim_{x ightarrow 2^{-}}f(x) = -
\infty,\lim_{x ightarrow 2^{-}}f(x) = + \infty,\lim_{x ightarrow \
2^{+}}f(x) = - \infty,\lim_{x ightarrow \ 2^{+}}f(x) = +
\infty.

    “Đồ thị hàm số y = f(x) bất kì có nhiều nhất hai đường tiệm cận ngang.“ đúng vì chỉ có hai giới hạn \lim_{x ightarrow - \infty}f(x),\ \
\lim_{x ightarrow + \infty}f(x).

  • Câu 23: Thông hiểu

    Xác định tiệm cận đứng của đồ thị hàm số

    Tìm số tiệm cận đứng của đồ thị hàm số y
= \frac{x^{2} - 3x - 4}{x^{2} - 16}y=x23x4x216.

    Xét phương trình x^{2} - 16 = 0\
\  \Leftrightarrow \ \ x = \pm 4.

    Ta có:

    \lim_{x ightarrow \  - 4}y = \lim_{x
ightarrow \  - 4}\frac{x^{2} - 3x - 4}{x^{2} - 16}

    = \lim_{x
ightarrow \  - 4}\frac{(x + 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x
ightarrow \  - 4}\frac{x + 1}{x + 4} = \infty ightarrow x = -
4 là TCĐ;

    \lim_{x ightarrow \ 4}y = \lim_{x
ightarrow \ 4}\frac{x^{2} - 3x - 4}{x^{2} - 16}

    = \lim_{x ightarrow
\ 4}\frac{(x + 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x ightarrow \
4}\frac{x + 1}{x + 4} = \frac{5}{8}ightarrow x = 4 không là TCĐ.

    Vậy đồ thị hàm số có duy nhất một tiệm cận đứng.

  • Câu 24: Thông hiểu

    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} + 2x +
3}{\sqrt{x^{4} - 3x^{2} + 2}}y=x2+2x+3x43x2+2 có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = \left( - \infty; - \sqrt{2}
ight) \cup ( - 1;1) \cup \left( \sqrt{2}; + \infty ight). Ta có:

    \lim_{x ightarrow \pm \infty}y = 1
ightarrow y = 1 là TCN;

    \lim_{x ightarrow \ \left( - \sqrt{2}
ight)^{-}}y = + \infty ightarrow x = - \sqrt{2} là TCĐ;

    \lim_{x ightarrow \ ( - 1)^{+}}y = +
\infty ightarrow x = - 1 là TCĐ;

    \lim_{x ightarrow \ 1^{-}}y = + \infty
ightarrow x = 1 là TCĐ;

    \lim_{x ightarrow \ {\sqrt{2}}^{+}}y =
+ \infty ightarrow x = \sqrt{2} là TCĐ.

    Vậy hàm số đã cho có tất cả năm đường tiệm cận.

  • Câu 25: Nhận biết

    Chọn câu đúng

    Cho hàm số y = f(x)y=f(x)\lim_{x ightarrow \pm \infty}f(x) = 1limxightarrow±f(x)=1\lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{+}}f(x) = 10.limxightarrow2f(x)=limxightarrow2+f(x)=10. Khẳng định nào sau đây là đúng?

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow \pm \infty}f(x) = 1\
\ \overset{}{ightarrow}\ \ y = 1 là TCN.

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = 10\ \ \overset{}{ightarrow}\ \ x = 0 không phải là TCĐ.

  • Câu 26: Thông hiểu

    Tìm hàm số có đúng hai tiệm cận ngang

    Đồ thị hàm số nào sau đây có đúng hai tiệm cận ngang?

    Xét \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{\sqrt{x^{2} - x}}{|x| + 2}= \lim_{x
ightarrow + \infty}\frac{x\sqrt{1 - \frac{1}{x}}}{x + 2} = \lim_{x
ightarrow + \infty}\frac{\sqrt{1 - \frac{1}{x}}}{1 + \frac{2}{x}} =
1

    Xét \lim_{x ightarrow - \infty}y =
\lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} - x}}{|x| + 2}= \lim_{x
ightarrow - \infty}\frac{- x\sqrt{1 - \frac{1}{x}}}{- x + 2} = \lim_{x
ightarrow - \infty}\frac{- \sqrt{1 - \frac{1}{x}}}{- 1 + \frac{2}{x}}
= 1

    Xét \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{|x| - 2}{x + 1}= \lim_{x ightarrow
+ \infty}\frac{x - 2}{x + 1} = \lim_{x ightarrow + \infty}\frac{1 -
\frac{2}{x}}{1 + \frac{1}{x}} = 1;

    Xét \lim_{x ightarrow - \infty}y =
\lim_{x ightarrow - \infty}\frac{|x| - 2}{x + 1}= \lim_{x ightarrow
- \infty}\frac{- x - 2}{x + 1} = \lim_{x ightarrow + \infty}\frac{- 1
- \frac{2}{x}}{1 + \frac{1}{x}} = - 1.

    Ta có: y = \frac{\sqrt{4 - x^{2}}}{x +
1}y = \frac{\sqrt{x + 2}}{|x| -
2} có thể loại trừ vì TXĐ không chứa - \infty+
\infty.

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Đồ thị hàm số y = \frac{\sqrt{x -
7}}{x^{2} + 3x - 4}y=x7x2+3x4 có bao nhiêu đường tiệm cận đứng?

    TXĐ D = \lbrack 7\ ; + \infty)\
.

    x^{2} + 3x - 4 eq 0,\ \ \forall x
\in D.

    Do đó đồ thị hàm số không có tiệm cận đứng.

  • Câu 28: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = f(x)y=f(x)\lim_{x ightarrow + \infty}f(x) = 0limxightarrow+f(x)=0\lim_{x ightarrow - \infty}f(x) = +
\inftylimxightarrowf(x)=+. Khẳng định nào sau đây là khẳng định đúng?

    Ta có \lim_{x ightarrow + \infty}f(x) =
0\overset{}{ightarrow}y = 0 là tiệm cận ngang.

    Đáp án “Đồ thị hàm số nằm phía trên trục hoành.“ sai vì chọn hàm y = \left\{ \begin{matrix}
\left( \dfrac{1}{2} ight)^{x} & ;x \leq - 1 \\
- \left( \dfrac{1}{2} ight)^{x} & ;x \geq 1 \\
\end{matrix} ight..

    Vậy ta chỉ có đáp án “Đồ thị hàm số có một tiệm cận ngang là trục hoành” đúng.

  • Câu 29: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = f(x)y=f(x)\lim_{x ightarrow + \infty}f(x) = 0limxightarrow+f(x)=0\lim_{x ightarrow 0^{+}}f(x) = +
\inftylimxightarrow0+f(x)=+. Khẳng định nào sau đây là khẳng định đúng?

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow + \infty}f(x) = 0\ \
\overset{}{ightarrow}\ \ y = 0 là TCN.

    \lim_{x ightarrow 0^{+}}f(x) = +
\infty\ \ \overset{}{ightarrow}\ \ x = 0 là TCĐ.

  • Câu 30: Thông hiểu

    Chọn mệnh đề đúng

    Cho hàm số y = \frac{x + 1}{\sqrt{x^{2} +
1}}y=x+1x2+1. Mệnh đề nào sau đây là đúng?

    TXĐ: D\mathbb{= R} suy ra đồ thị hàm số không có tiệm cận đứng.

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{x + 1}{\sqrt{x^{2} + 1}}= \lim_{x
ightarrow + \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{1 +
\frac{1}{x^{2}}}} = \lim_{x ightarrow + \infty}\frac{x\left( 1 +
\frac{1}{x} ight)}{x\sqrt{1 + \frac{1}{x^{2}}}} = 1ightarrow y =1 là TCN;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x + 1}{\sqrt{x^{2} + 1}}= \lim_{x
ightarrow - \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{1 +
\frac{1}{x^{2}}}} = \lim_{x ightarrow - \infty}\frac{x\left( 1 +
\frac{1}{x} ight)}{- x\sqrt{1 + \frac{1}{x^{2}}}} = - 1ightarrow y= - 1 là TCN.

    Vậy đồ thị hàm số không có tiệm cận đứng và có đúng hai tiệm cận ngang.

  • Câu 31: Thông hiểu

    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{2x\sqrt{3 -
x^{2}}}{x^{2} + x - 2}y=2x3x2x2+x2 có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = \left\lbrack - \sqrt{3}\ ;\
\sqrt{3} ightbrack\backslash\left\{ 1 ight\}\ \
\overset{}{ightarrow}không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 1^{+}}\frac{2x\sqrt{3 - x^{2}}}{x^{2} + x - 2} = +
\infty \\
\lim_{x ightarrow 1^{-}}\frac{2x\sqrt{3 - x^{2}}}{x^{2} + x - 2} = -
\infty \\
\end{matrix} ight.\ \overset{}{ightarrow}\ \ x = 1 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận.

  • Câu 32: Thông hiểu

    Chọn đáp án đúng

    Tìm tất cả các đường tiệm cận của đồ thị hàm số y = f(x) = \frac{3x + 2}{|x| + 1}.y=f(x)=3x+2|x|+1.

    TXĐ: D\mathbb{= R} suy ra đồ thị không có tiệm cận đứng.

    Ta có:

    \lim_{x ightarrow - \infty}\frac{3x +
2}{|x| + 1} = - 3\overset{}{ightarrow}\ \ y = - 3 là TCN

    \lim_{x ightarrow + \infty}\frac{3x +
2}{|x| + 1} = 3\overset{}{ightarrow}\ \ y = 3 là TCN.

  • Câu 33: Nhận biết

    Tìm khẳng định đúng

    Cho hàm số y = f(x)y=f(x)\lim_{x ightarrow - \infty}f(x) = - 1limxightarrowf(x)=1\lim_{x ightarrow 1^{+}}f(x) = +
\inftylimxightarrow1+f(x)=+. Khẳng định nào sau đây là khẳng định đúng?

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow - \infty}f(x) = - 1\
\ \overset{}{ightarrow}\ \ y = - 1 là TCN.

    \lim_{x ightarrow \ 1^{+}}f(x) = +
\infty\ \ \overset{}{ightarrow}\ \ x = 1 là TCĐ.

Bạn còn 2 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 2 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Bài tập Toán 12 Tìm tiệm cận của đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
    Chia sẻ
    Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
    Mã QR Code
    Đóng