Tìm giá trị thực của tham số để đồ thị hàm sô
có đường tiệm cận đứng đi qua điểm
TXĐ: .
Ta có là TCĐ.
Do đó yêu cầu bài toán .
VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Tìm tham số m để đồ thị hàm số có tiệm cận. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!
Tìm giá trị thực của tham số để đồ thị hàm sô
có đường tiệm cận đứng đi qua điểm
TXĐ: .
Ta có là TCĐ.
Do đó yêu cầu bài toán .
Cho hàm số
với
là tham số thực. Gọi
là điểm thuộc
sao cho tổng khoảng cách từ
đến hai đường tiệm cận của
nhỏ nhất. Tìm tất cả các giá trị của
để giá trị nhỏ nhất đó bằng
Áp dụng công thức giải nhanh:
Điểm thuộc đồ thị hàm số
.
Đồ thị hàm số có TCĐ ; TCN
.
Ta có .
Khi đó
Áp dụng: Ycbt
Tìm tất cả các giá trị của tham số để đồ thị hàm số
có tiệm cận ngang mà không có tiệm cận đứng.
Ta có là tiệm cận ngang với mọi
.
Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì phương trình vô nghiệm
.
Nhận xét.
Bạn đọc dễ nhầm lẫn mà xét thêm trường hợp mẫu thức có nghiệm
.Điều này là sai, vì với
thì hàm số trở thành
. Đồ thị này vẫn còn tiệm cận đứng là
.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận ngang và đúng một tiệm cận đứng.
Ta có là tiệm cận ngang với mọi
Để đồ thị hàm số có đúng một tiệm cận ngang và đúng một tiệm cận đứng
Phương trình
có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có một nghiệm bằng
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận ngang.
Ta có:
với
;
với
Nếu thì
suy ra hàm số chỉ có đúng một TCN là
(Do
khi
)
Do đó giá trị thỏa yêu cầu bài toán.
Nếu , để đồ thị hàm số có một tiệm cận ngang
Vậy thỏa mãn yêu cầu bài toán.
Tìm trên đồ thị hàm số những điểm
sao cho khoảng cách từ
đến tiệm cận đứng bằng ba lần khoảng cách từ
đến tiệm cận ngang của đồ thị.
Gọi với
là điểm thuộc đồ thị.
Đường tiệm cận đứng đường tiệm cận ngang
.
Ycbt
.
Áp dụng công thức giải nhanh.
Với .
Suy ra .
Biết rằng đồ thị hàm số nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng
Ta có:
là TCN;
là TCĐ.
Từ giả thiết, ta có
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có ba đường tiệm cận.
Ta có là tiệm cận ngang với mọi
.
Do đó ycbt tương đương với phương trình có hai nghiệm phân biệt khác
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đường tiệm cận ngang.
Đồ thị hàm số có đường tiệm cận ngang khi và chỉ khi các giới hạn
và
tồn tại hữu hạn.
Ta có:
Với .
Khi đó suy ra đồ thị không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định:
nên ta không xét trường hợp
hay
được.
Do đó hàm số không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định
và
là TCN.
Tìm tất cả các giá trị thực của tham số sao cho đồ thị của hàm số
có hai tiệm cận ngang.
Khi ta có:
là TCN ;
là TCN.
Với suy
suy ra đồ thị hàm số không có tiệm cận.
Với thì hàm số có TXĐ là một đoạn nên đồ thị hàm số không có TCN.
Vậy với thì đồ thị hàm số có hai tiệm cận ngang.
Cho hàm số với
là tham số thực và
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Khi thì phương trình
vô nghiệm nên đồ thị hàm số không có tiệm cận đứng.
Ta có là TCN;
là TCN.
Vậy đồ thị hàm số có đúng hai tiệm cận.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận đứng.
Để đồ thị hàm số có đúng một tiệm cận đứng
có nghiệm duy nhất
.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
nhận đường thẳng
làm tiệm cận ngang.
Ta có là TCN.
Do đó theo yêu cầu bài toán .
Có bao nhiêu giá trị nguyên của tham số thực thuộc đoạn
để hàm số
có hai tiệm cận đứng.
Để hàm số có hai tiệm cận đứng
có hai nghiệm phân biệt khác
Mà
.
Vậy có tất cả giá trị nguyên thỏa mãn.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
không có tiệm cận đứng.
TXĐ: .
Ta có
Để đồ thị hàm số không có tiệm cận đứng thì các giới hạn tồn tại hữu hạn
Cách 2. (Chỉ áp dụng cho mẫu thức là bậc nhất)
Từ yêu cầu bài toán suy ra phương trình có một nghiệm là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: