Tìm tất cả các giá trị thực của tham số
Ta có là tiệm cận ngang với mọi
Để đồ thị hàm số có đúng một tiệm cận ngang và đúng một tiệm cận đứng
Phương trình
có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có một nghiệm bằng
VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Tìm tham số m để đồ thị hàm số có tiệm cận. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!
Tìm tất cả các giá trị thực của tham số
Ta có là tiệm cận ngang với mọi
Để đồ thị hàm số có đúng một tiệm cận ngang và đúng một tiệm cận đứng
Phương trình
có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có một nghiệm bằng
Tìm tất cả các giá trị thực của tham số
Đồ thị hàm số có đường tiệm cận ngang khi và chỉ khi các giới hạn
và
tồn tại hữu hạn.
Ta có:
Với .
Khi đó suy ra đồ thị không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định:
nên ta không xét trường hợp
hay
được.
Do đó hàm số không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định
và
là TCN.
Tìm trên đồ thị hàm số
Gọi với
là điểm thuộc đồ thị.
Đường tiệm cận đứng đường tiệm cận ngang
.
Ycbt
.
Áp dụng công thức giải nhanh.
Với .
Suy ra .
Tìm tất cả các giá trị thực của tham số
Để đồ thị hàm số có đúng một tiệm cận đứng
có nghiệm duy nhất
.
Biết rằng đồ thị hàm số
Ta có:
là TCN;
là TCĐ.
Từ giả thiết, ta có
Tìm tất cả các giá trị thực của tham số
Khi ta có:
là TCN ;
là TCN.
Với suy
suy ra đồ thị hàm số không có tiệm cận.
Với thì hàm số có TXĐ là một đoạn nên đồ thị hàm số không có TCN.
Vậy với thì đồ thị hàm số có hai tiệm cận ngang.
Cho hàm số
Áp dụng công thức giải nhanh:
Điểm thuộc đồ thị hàm số
.
Đồ thị hàm số có TCĐ ; TCN
.
Ta có .
Khi đó
Áp dụng: Ycbt
Tìm tất cả các giá trị thực của tham số
TXĐ: .
Ta có
Để đồ thị hàm số không có tiệm cận đứng thì các giới hạn tồn tại hữu hạn
Cách 2. (Chỉ áp dụng cho mẫu thức là bậc nhất)
Từ yêu cầu bài toán suy ra phương trình có một nghiệm là
.
Tìm tất cả các giá trị thực của tham số
Ta có là TCN.
Do đó theo yêu cầu bài toán .
Có bao nhiêu giá trị nguyên của tham số thực
Để hàm số có hai tiệm cận đứng
có hai nghiệm phân biệt khác
Mà
.
Vậy có tất cả giá trị nguyên thỏa mãn.
Tìm tất cả các giá trị thực của tham số
Ta có là tiệm cận ngang với mọi
.
Do đó ycbt tương đương với phương trình có hai nghiệm phân biệt khác
Tìm tất cả các giá trị thực của tham số
Ta có:
với
;
với
Nếu thì
suy ra hàm số chỉ có đúng một TCN là
(Do
khi
)
Do đó giá trị thỏa yêu cầu bài toán.
Nếu , để đồ thị hàm số có một tiệm cận ngang
Vậy thỏa mãn yêu cầu bài toán.
Tìm giá trị thực của tham số
TXĐ: .
Ta có là TCĐ.
Do đó yêu cầu bài toán .
Cho hàm số
Khi thì phương trình
vô nghiệm nên đồ thị hàm số không có tiệm cận đứng.
Ta có là TCN;
là TCN.
Vậy đồ thị hàm số có đúng hai tiệm cận.
Tìm tất cả các giá trị của tham số
Ta có là tiệm cận ngang với mọi
.
Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì phương trình vô nghiệm
.
Nhận xét.
Bạn đọc dễ nhầm lẫn mà xét thêm trường hợp mẫu thức có nghiệm
.Điều này là sai, vì với
thì hàm số trở thành
. Đồ thị này vẫn còn tiệm cận đứng là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: