Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Bạn đã dùng hết 2 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12: Tìm giá trị lớn nhất nhỏ nhất của hàm số trên đoạn

VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 32 câu
  • Điểm số bài kiểm tra: 32 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số

    Tìm giá trị nhỏ nhất của hàm số f(x) =
\frac{x^{2} + 3}{x - 1}f(x)=x2+3x1 trên đoạn \lbrack 2;4brack[2;4brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 otin [ 2;4] \\
x = 3 \in \lbrack 2;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(2) = 7 \\
f(3) = 6 \\
f(4) = \frac{19}{3} \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 2;4brack}f(x) =
6.

    Cách 2: Sử dụng công cụ TABLE (MODE 7).

    Bước 1: Bấm tổ hợp phím MODE 7.

    Bước 2: Nhập f(X) = \frac{X^{2} + 3}{X -
1}.

    Sau đó ấn phím = (nếu có g(X) thì ấn tiếp phím =) sau đó nhập \left\{ \begin{matrix}
Start = 2 \\
End = 4 \\
Step = 0.2 \\
\end{matrix} ight.

    (Chú ý: Thường ta chọn Step = \frac{End -Start}{10})

    Bước 3: Tra bảng nhận được và tìm GTNN:

    Dựa vào bảng giá trị ở trên, ta thấy \min_{\lbrack 2;4brack}f(x) = f(3) =
6.

  • Câu 2: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) = \frac{3x - 1}{x -
3}f(x)=3x1x3. Tìm giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số trên đoạn \lbrack 0;2brack.[0;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{- 8}{(x -3)^2}.

    Ta có f'(x) < 0,\forall x \in
(0;2).

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack 0;2brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;2brack}f(x) = f(0) = \frac{1}{3} \\
m = \min_{\lbrack 0;2brack}f(x) = f(2) = - 5 \\
\end{matrix} ight.\ .

  • Câu 3: Vận dụng
    Xác định giá trị nhỏ nhất của hàm số

    Tìm giá trị nhỏ nhất mm của hàm số f(x) = 2\cos^{3}x - \frac{9}{2}\cos^{2}x +3\cos x + \frac{1}{2}f(x)=2cos3x92cos2x+3cosx+12.

    Hướng dẫn:

    Đặt t = \cos x\ ( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị nhỏ nhất của hàm số g(t) = 2t^{3} - \frac{9}{2}t^{2} + 3t +\frac{1}{2} trên đoạn \lbrack -1;1brack''.

    Đạo hàm g'(t) = 6t^{2} - 9t +3

    \Rightarrow g'(t) = 0\Leftrightarrow \left\lbrack \begin{matrix}t = 1 \in \lbrack - 1;1brack \\t = \frac{1}{2} \in \lbrack - 1;1brack \\\end{matrix} ight.

    Ta có \left\{ \begin{matrix}g( - 1) = - 9 \\g\left( \dfrac{1}{2} ight) = \dfrac{9}{8} \\g(1) = 1 \\\end{matrix} ight. \Rightarrow\min_{\lbrack - 1;1brack}g(t) = g( - 1) = - 9

    \Rightarrow \min_{x\mathbb{\in R}}f(x) =- 9

  • Câu 4: Vận dụng
    Chọn phương án thích hợp

    Tìm giá trị lớn nhất MM của hàm số f(x) = \left| - x^{2} - 4x + 5
ight|Extra \left or missing \right trên đoạn \lbrack -
6;6brack[6;6brack.

    Hướng dẫn:

    Xét hàm số g(x) = - x^2- 4x +
5 liên tục trên đoạn \lbrack -
6;6brack.

    Đạo hàm g'(x) = - 2x - 4

    \Rightarrow g'(x) = 0
\Leftrightarrow x = - 2 \in \lbrack - 6;6brack

    Lại có g(x) = 0 \Leftrightarrow - x^2 - 4x + 5 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 6;6brack \\
x = - 5 \in \lbrack - 6;6brack \\
\end{matrix} ight..

    Ta có \left\{ \begin{matrix}
g( - 6) = - 7 \\
g( - 2) = 9 \\
g(6) = - 55 \\
g(1) = \ g( - 5) = 0 \\
\end{matrix} ight.

    \Rightarrow \max_{\lbrack -
6;6brack}f(x) = \max_{\lbrack - 6;6brack}\left\{ \left| g( - 6)
ight|;\left| g( - 2) ight|;\left| g(6) ight|;\left| g(1)
ight|;\left| g( - 5) ight| ight\} = 55.

    Nhận xét. Bài này rất dễ sai lầm vì không để ý hàm trị tuyệt đối không âm.

  • Câu 5: Thông hiểu
    Định giá trị lớn nhất của hàm số chứa căn

    Tìm giá trị lớn nhất MM của hàm số f(x) = \sqrt{x - 2} + \sqrt{4 -
x}.f(x)=x2+4x.

    Hướng dẫn:

    TXĐ: D = \lbrack 2;4brack.

    Đạo hàm f(x) = \frac{1}{2\sqrt{x - 2}} -
\frac{1}{2\sqrt{4 - x}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 3 \in \lbrack 2;4brack

    Ta có \left\{ \begin{matrix}
f(2) = \sqrt{2} \\
f(3) = 2 \\
f(4) = \sqrt{2} \\
\end{matrix} ight.\  ightarrow M = 2.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Tìm giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số f(x) = x\sqrt{4 - x^{2}}f(x)=x4x2.

    Hướng dẫn:

    TXĐ: D = \lbrack -
2;2brack.

    Ta có:

    f'(x) = \sqrt{4 - x^{2}} -
\frac{x^{2}}{\sqrt{4 - x^{2}}} = \frac{4 - 2x^{2}}{\sqrt{4 -
x^{2}}}

    \Rightarrow f'(x) = 0

    \Leftrightarrow 4 - 2x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = \sqrt{2} \in \lbrack - 2;2brack \\
x = - \sqrt{2} \in \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = 0 \\
f\left( - \sqrt{2} ight) = - 2 \\
f\left( \sqrt{2} ight) = 2 \\
f(2) = 0 \\
\end{matrix} ight.\  \Rightarrow M = 2;\ m = - 2

  • Câu 7: Vận dụng
    Định giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất MM của hàm số f(x) = \sqrt{x - 1} + \sqrt{3 - x} -2\sqrt{- x^2 + 4x - 3}f(x)=x1+3x2x2+4x3.

    Hướng dẫn:

    TXĐ: D = \lbrack 1;3brack

    Đặt t = \sqrt{x - 1} + \sqrt{3 - x}\ \ \
\left( \sqrt{2} \leq t \leq 2 ight)

    \Rightarrow t^{2} = x - 1 + 3 - x +
2\sqrt{x - 1}\sqrt{3 - x}

    \Rightarrow - 2\sqrt{- x^{2} + 4x - 3} =
2 - t^{2}

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = - t^{2} + t + 2 trên đoạn \left\lbrack \sqrt{2};2
ightbrack''.

    Xét hàm số g(t) = - t^{2} + t +
2 xác định và liên tục trên \left\lbrack \sqrt{2};2
ightbrack.

    Đạo hàm g'(t) = - 2t + 1 < 0,\
\forall t \in \left( \sqrt{2};2 ight).

    Suy ra hàm số g(t) nghịch biến trên đoạn \left\lbrack \sqrt{2};2
ightbrack.

    Do đó \max_{\left\lbrack \sqrt{2};2
ightbrack}g(t) = g\left( \sqrt{2} ight) =
\sqrt{2}\overset{}{ightarrow}\max_{\lbrack 1;3brack}f(x) =
\sqrt{2}.

    Bình luận: Sau khi đọc xong lời giải trên sẽ có nhiều bạn đọc thắc mắc là tại sao biết được t \in \left\lbrack
\sqrt{2};2 ightbrack.

    Từ phép đặt ẩn phụ t = \sqrt{x - 1} +
\sqrt{3 - x} = h(x).

    Đạo hàm h'(x) = \frac{1}{2\sqrt{x -
1}} - \frac{1}{2\sqrt{3 - x}}

    \Rightarrow h'(x) = 0
\Leftrightarrow x = 2 \in \lbrack 1;3brack

    Ta có \left\{ \begin{matrix}
h(1) = \sqrt{2} \\
h(2) = 2 \\
h(3) = \sqrt{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\min_{\lbrack 1;3brack}h(x) = \sqrt{2} \\
\max_{\lbrack 1;3brack}h(x) = 2 \\
\end{matrix} ight.

    \Rightarrow \sqrt{2} \leq h(x) \leq 2
\Rightarrow \sqrt{2} \leq t \leq 2

  • Câu 8: Thông hiểu
    Tìm max của hàm số trên đoạn

    Tìm giá trị lớn nhất MM của hàm số f(x) = \left| x^{2} - 3x + 2 ight| -
xExtra \left or missing \right trên đoạn \lbrack -
4;4brack[4;4brack.

    Hướng dẫn:

    Hàm số f(x) xác định và liên tục trên đoạn \lbrack - 4;4brack.

    Nếu x \in \lbrack 1;2brack thì x^{2} - 3x + 2 \leq 0 nên suy ra f(x) = - x^{2} + 2x - 2.

    Đạo hàm f'(x) = - 2x + 2

    \Rightarrow f'(x) = 0 \Leftrightarrow
x = 1 \in \lbrack 1;2brack

    Ta có \left\{ \begin{matrix}
f(1) = - 1 \\
\ f(2) = - 2 \\
\end{matrix} ight.\ .

    Nếu x \in \lbrack - 4;1brack \cup
\lbrack 2;4brack thì x^{2} - 3x +
2 \geq 0 nên suy ra f(x) = x^{2} -
4x + 2.

    Đạo hàm f'(x) = 2x - 4

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 2 \in [ - 4;1] \cup \lbrack
2;4brack

    Ta có \left\{ \begin{matrix}
f( - 4) = 34 \\
\ f(1) = - 1 \\
f(2) = - 2 \\
f(4) = 2 \\
\end{matrix} ight..

    So sánh hai trường hợp, ta được \max_{\lbrack - 4;4brack}f(x) = f( - 4) =
34

  • Câu 9: Thông hiểu
    Tìm tất cả các giá trị của tham số m

    Cho hàm số f(x) = x^{3} + \left( m^{2} +1 ight)x + m^{2} - 2Extra \left or missing \right với mm là tham số thực. Tìm tất cả các giá trị của mm để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;2brack[0;2brack bằng 7.7.

    Hướng dẫn:

    Đạo hàmf'(x) = 3x^{2} + m^{2} + 1> 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;2brack

    \Rightarrow \min_{\lbrack 0;2brack}f(x)= f(0) = m^{2} - 2

    Theo bài ra: \min_{\lbrack0;2brack}f(x) = 7 \Leftrightarrow m^{2} - 2 = 7 \Leftrightarrow m =\pm 3.

  • Câu 10: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) = \sqrt{2x + 14} +
\sqrt{5 - x}f(x)=2x+14+5x. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    TXĐ: D = \lbrack -
7;5brack.

    Đạo hàm f(x) = \frac{1}{\sqrt{2x + 14}} -
\frac{1}{2\sqrt{5 - x}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in \lbrack - 7;5brack

    Ta có \left\{ \begin{matrix}
f( - 7) = 2\sqrt{3} \\
f(5) = 2\sqrt{6} \\
f(1) = 6 \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack - 7;5brack}f(x) = f( - 7) = 2\sqrt{3}

  • Câu 11: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất MM của hàm số f(x) = sin^{3}x + cos2x + \sin x +
3f(x)=sin3x+cos2x+sinx+3.

    Hướng dẫn:

    Ta có f(x) = sin^{3}x + cos2x + \sin x +
3 = sin^{3}x - 2sin^{2}x + \sin x + 4.

    Đặt t = \sin x\ ;( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{3} - 2t^{2} + t + 4 trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = 3t^{2} - 4t +
1

    \Rightarrow g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \in \lbrack - 1;1brack \\
t = \frac{1}{3} \in \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g\left( \dfrac{1}{3} ight) = \dfrac{112}{27} \\
g(1) = 4 \\
\end{matrix} ight. \Rightarrow
\max_{\lbrack - 1;1brack}g(t) = g\left( \dfrac{1}{3} ight) =
\frac{112}{27}

    \Rightarrow \max_{x\mathbb{\in R}}f(x) =
\frac{112}{27}

  • Câu 12: Thông hiểu
    Tìm giá trị lớn nhất của tham số m

    Cho hàm số f(x) = \frac{x - m^{2}}{x +
8}f(x)=xm2x+8 với mm là tham số thực. Tìm giá trị lớn nhất của mm để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
0;3brack[0;3brack bằng - 2.2.

    Hướng dẫn:

    Đạo hàm y' = \frac{8 + m^{2}}{(x +
8)^{2}} > 0,\ \forall x \in \lbrack 0;3brack.

    Suy ra hàm số f(x) đồng biến trên đoạn \lbrack 0;3brack

    \Rightarrow \min_{\lbrack
0;3brack}f(x) = f(0) = - \frac{m^{2}}{8}

    Thao bài ra: \min_{\lbrack
0;3brack}f(x) = - 2 \Leftrightarrow - \frac{m^{2}}{8} = - 2
\Leftrightarrow m = \pm 4

    Suy ra giá trị m lớn nhất là m = 4.

  • Câu 13: Thông hiểu
    Tìm m để giá trị nhỏ nhất hàm số trên đoạn cho trước

    Giá trị nhỏ nhất của hàm số y = \frac{x +
m^{2}}{x - 1}y=x+m2x1 trên đoạn \lbrack -
1;0brack[1;0brack bằng:

    Hướng dẫn:

    Đạo hàm y' = \frac{- 1 - m^{2}}{(x -
1)^{2}} < 0,\forall x \in \lbrack - 1;0brack.

    Suy ra hàm số f(x) nghịch biến trên \lbrack - 1;0brack

    \Rightarrow \min_{\lbrack -
1;0brack}f(x) = f(0) = - m^{2}.

  • Câu 14: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{3} - 2x^{2} - 4x + 1f(x)=x32x24x+1 trên đoạn \lbrack 1;3brack.[1;3brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 4x -
4

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \in \lbrack 1;3brack \\
x = - \frac{2}{3} otin \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(1) = - 4 \\
f(2) = - 7 \\
f(3) = - 2 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
2

    Cách 2. Sử dụng chức năng MODE 7 và nhập hàm f(X) = X^{3} - 2X^{2} - 4X + 1 với thiết lập Start 1, End 3, Step 0,2.

    Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng - 2 khi X = 3.

  • Câu 15: Vận dụng
    Xác định mệnh đề đúng

    Cho hàm số y = \frac{x + m}{x -
1}y=x+mx1 (với mm là tham số thực) thỏa mãn \min_{\lbrack 2;4brack}y =
3min[2;4bracky=3. Mệnh đề nào dưới đây là đúng?

    Hướng dẫn:

    Đạo hàm f'(x) = - \frac{m + 1}{(x -
1)^{2}}.

    TH1. Với m > - \ 1 suy ra f'(x) = - \frac{m + 1}{(x - 1)^{2}} <
0;\ \ \forall x eq 1 nên hàm số f(x) nghịch biến trên mỗi khoảng xác định.

    Khi đó \min_{\lbrack 2;4brack}y = f(4)
= \frac{m + 4}{3} = 3 \Leftrightarrow m = 5 (thỏa mãn).

    TH2. Với m < -  1 suy ra f'(x) = - \frac{m + 1}{(x - 1)^2} >
0;\ \ \forall x eq 1 nên hàm số f(x) đồng biến trên mỗi khoảng xác định.

    Khi đó \min_{\lbrack 2;4brack}y = f(2)
= m + 2 = 3 \Leftrightarrow m = 1 (Không thỏa mãn).

    Vậy m = 5 là giá trị cần tìm và thỏa mãn điều kiện m > 4.

  • Câu 16: Thông hiểu
    Tìm giá trị lớn nhất nhỏ nhất của hàm số

    Cho hàm số f(x) = \frac{2x^{2} + x + 1}{x
+ 1}f(x)=2x2+x+1x+1. Tìm giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số trên đoạn \lbrack 0;1brack.[0;1brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{2x^{2} + 4x}{(x+ 1)^2}.

    Ta có \left\{ \begin{matrix}
f'(x) \geq 0,\ \forall x \in \lbrack 0;1brack \\
f'(x) = 0 \Leftrightarrow x = 0 \\
\end{matrix} ight..

    Suy ra hàm số f(x) đồng biến trên đoạn \lbrack 0;1brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;1brack}f(x) = f(1) = 2 \\
m = \min_{\lbrack 0;1brack}f(x) = f(0) = 1 \\
\end{matrix} ight.

  • Câu 17: Thông hiểu
    Chọn khẳng định đúng

    Xét hàm số y = - x - \frac{4}{x}y=x4x trên đoạn \lbrack - 1;2brack[1;2brack. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    0 \in \lbrack - 1;2brack\left\{ \begin{matrix}
\lim_{x ightarrow 0^{-}}y = + \infty \\
\lim_{x ightarrow 0^{+}}y = - \infty \\
\end{matrix} ight. nên hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất.

  • Câu 18: Thông hiểu
    Tính giá trị biểu thức

    Tập giá trị của hàm số f(x) = x +
\frac{9}{x}f(x)=x+9x với x \in \lbrack
2;4brackx[2;4brack là đoạn \lbrack
a;bbrack[a;bbrack. Tính P = b -
aP=ba.

    Hướng dẫn:

    Ta có: f'(x) = 1 - \frac{9}{x^{2}} =
\frac{x^{2} - 9}{x^{2}}

    ightarrow f'(x) = 0

    \Leftrightarrow x^{2} - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \in \lbrack 2;4brack \\
x = - 3 otin \lbrack 2;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(2) = \frac{13}{2} \\
f(3) = 6 \\
f(4) = \frac{25}{4} \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack 2;4brack}f(x) = 6;\max_{\lbrack 2;4brack}f(x) =
\frac{13}{2}

    \Rightarrow \lbrack a;bbrack =
\left\lbrack 6;\frac{13}{2} ightbrack \Rightarrow P = b - a = \frac{13}{2} - 6 =
\frac{1}{2}

  • Câu 19: Vận dụng
    Tìm giá trị lớn nhất của hàm số chứa căn

    Tìm giá trị lớn nhất MM của hàm số f(x) = \sqrt{x} + \sqrt{2 - x} +
2\sqrt{2x - x^{2}}f(x)=x+2x+22xx2.

    Hướng dẫn:

    TXĐ: D = \lbrack 0;2brack.

    Đặt t = \sqrt{x} + \sqrt{2 - x}\ \left(
\sqrt{2} \leq t \leq 2 ight).

    \Rightarrow t^{2} = x + 2\sqrt{x}\sqrt{2
- x} + 2 - x

    \Rightarrow 2\sqrt{2x - x^2} = t^2 -2

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{2} + t - 2 trên đoạn \left\lbrack \sqrt{2};2
ightbrack''.

    Xét hàm số g(t) = t^2 + t - 2 xác định và liên tục trên \left\lbrack
\sqrt{2};2 ightbrack.

    Đạo hàm g'(t) = 2t + 1 > 0,\
\forall t \in \left( \sqrt{2};2 ight).

    Suy ra hàm số g(t) đồng biến trên đoạn \left\lbrack \sqrt{2};2
ightbrack.

    Do đó \max_{\left\lbrack \sqrt{2};2
ightbrack}g(t) = g(2) = 4 \Rightarrow \max_{\lbrack 0;2brack}f(x)
= 4.

  • Câu 20: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số chứa căn

    Tìm giá trị nhỏ nhất mm của hàm số f(x) = x + \sqrt{2 - x^2}f(x)=x+2x2.

    Hướng dẫn:

    TXĐ: D = \left\lbrack - \sqrt{2};\sqrt{2}
ightbrack.

    Đạo hàm f'(x) = 1 - \frac{x}{\sqrt{2
- x^{2}}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \frac{x}{\sqrt{2 - x^{2}}} = 1

    \Leftrightarrow \sqrt{2 - x^{2}} = x
\Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
2 - x^{2} = x^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 1 \in \left\lbrack -
\sqrt{2};\sqrt{2} ightbrack

    Ta có \left\{ \begin{matrix}
f\left( - \sqrt{2} ight) = - \sqrt{2} \\
f(1) = 2 \\
f\left( \sqrt{2} ight) = \sqrt{2} \\
\end{matrix} ight.\  \Rightarrow m = - \sqrt{2}

  • Câu 21: Thông hiểu
    Tìm GTLN của hàm số lượng giác

    Tìm giá trị lớn nhất MM của hàm số f(x) = \frac{\sin x + 1}{sin^{2}x + \sin
x + 1}f(x)=sinx+1sin2x+sinx+1.

    Hướng dẫn:

    Đặt t = \sin x; ( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = \frac{t + 1}{t^2 + t + 1} trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = \frac{- t^{2} -
2t}{\left( t^{2} + t + 1 ight)^{2}} \Rightarrow g'(t) =
0

    \Leftrightarrow - t^2 - 2t = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \in \lbrack - 1;1brack \\
t = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g(0) = 1 \\
g(1) = \frac{2}{3} \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;1brack}g(t) =
g(0) = 1 \Rightarrow
\max_{x\mathbb{\in R}}f(x) = 1 .

  • Câu 22: Thông hiểu
    Tìm tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = \frac{x - m^{2} + m}{x
+ 1}f(x)=xm2+mx+1 với mm là tham số thực. Tìm tất cả các giá trị của mm để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack[0;1brack bằng - 2.2.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{m^2 - m +1}{(x + 1)^{2}} > 0,\forall x \in \lbrack 0;1brack.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;1brack

    \Rightarrow \min_{\lbrack
0;1brack}f(x) = f(0) = - m^{2} + m

    Theo bài ra:

    \min_{\lbrack 0;1brack}f(x) = - 2
\Leftrightarrow - m^{2} + m = - 2

    \Leftrightarrow m^{2} - m - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 23: Nhận biết
    Chọn mệnh đề đúng

    Xét hàm số f(x) = - \frac{4}{3}x^{3} -
2x^{2} - x - 3f(x)=43x32x2x3 trên \lbrack -
1;1brack[1;1brack. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Đạo hàm f'(x) = - 4x^{2} - 4x - 1 = -(2x + 1)^2 \leq 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack - 1;1brack nên có giá trị nhỏ nhất tại x = 1 và giá trị lớn nhất tại x = - 1.

  • Câu 24: Nhận biết
    Tìm min max của hàm số f(x)

    Cho hàm số f(x) = - 2x^{4} + 4x^{2} +10f(x)=2x4+4x2+10. Tìm giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số trên đoạn [0;2][0;2]

    Hướng dẫn:

    Đạo hàm f'(x) = - 8x^{3} +8x

    f'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \in \lbrack 0;2brack \\x = 1 \in \lbrack 0;2brack \\x = - 1 otin \lbrack 0;2brack \\\end{matrix} ight.

    Ta có \left\{ \begin{matrix}f(0) = 10 \\f(1) = 12 \\f(2) = - 6 \\\end{matrix} ight. \RightarrowM = \max_{\lbrack 0;2brack}f(x) = 12;\ m = \min_{\lbrack0;2brack}f(x) = - 6

  • Câu 25: Thông hiểu
    Tìm giá trị thực của tham số

    Tìm giá trị thực của tham số aa để hàm số f(x) = - x^{3} - 3x^{2} +
af(x)=x33x2+a có giá trị nhỏ nhất trên đoạn \lbrack - 1;1brack[1;1brack bằng 0.0.

    Hướng dẫn:

    Đạo hàm f'(x) = - 3x^{2} -
6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 1;1brack \\
x = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = a - 2 \\
f(0) = a \\
f(1) = a - 4 \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack - 1;1brack}f(x) = f(1) = a - 4

    Theo bài ra: \min_{\lbrack -
1;1brack}f(x) = 0 \Leftrightarrow a - 4 = 0 \Leftrightarrow a =
4

  • Câu 26: Thông hiểu
    Chọn mệnh đề đúng

    Xét hàm số f(x) = x^{3} + x - \cos x -
4f(x)=x3+xcosx4 trên nửa khoảng \lbrack 0; +
\infty)[0;+). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có f'(x) = 3x^{2} + 1 + \sin x
> 0,\forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0; + \infty).

    Khi đó hàm số không có giá trị lớn nhất nhưng có giá trị nhỏ nhất là \min_{\lbrack 0; + \infty)}f(x) = f(0) = -
5.

  • Câu 27: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
2x^{3} + 3x^{2} - 12x + 2f(x)=2x3+3x212x+2 trên đoạn [ - 1;2][1;2]?

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^2 + 6x -12

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 1;2brack \\
x = - 2 otin \lbrack - 1;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = 15 \\
f(1) = - 5 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}f(x) =
15 .

  • Câu 28: Thông hiểu
    Tính giá trị biểu thức P

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28f(x)=x33x29x+28 đạt giá trị nhỏ nhất trên đoạn \lbrack 0;4brack[0;4brack tại x_{0}x0. Tính P
= x_{0} + 2018.P=x0+2018.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 6x -
9

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 otin \lbrack 0;4brack \\
x = 3 \in \lbrack 0;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3 = x_{0} ightarrow P =
2021

  • Câu 29: Thông hiểu
    Định tập giá trị T của hàm số

    Tìm tập giá trị TT của hàm số f(x) = x^{2} + \frac{2}{x}f(x)=x2+2x với x \in \lbrack 3;5brackx[3;5brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 2x - \frac{2}{x^{2}}= \frac{2\left( x^3 - 1 ight)}{x^{2}} > 0,\ \forall x \in(3;5)

    Suy ra hàm số đồng biến trên [3;5] nên \left\{
\begin{matrix}
\min_{\lbrack 3;5brack}f(x) = f(3) = \frac{29}{3} \\
\max_{\lbrack 3;5brack}f(x) = f(5) = \frac{127}{5} \\
\end{matrix} ight.

    Vậy tập giá trị của hàm số là đoạn \left\lbrack \frac{29}{3};\ \frac{127}{5}
ightbrack.

  • Câu 30: Thông hiểu
    Xác định hàm số theo yêu cầu

    Hàm số nào sau đây không có giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack - 2;2brack[2;2brack?

    Hướng dẫn:

    Nhận thấy hàm số y = \frac{x - 1}{x +
1} không xác định tại x = - 1 \in [ - 2;2]

    Lại có \lim_{x ightarrow -
1^{+}}\frac{x - 1}{x + 1} = - \infty;\ \lim_{x ightarrow -
1^{-}}\frac{x - 1}{x + 1} = + \infty.

    Do đó hàm số này không có giá trị nhỏ nhất và lớn nhất trên \lbrack - 2;2brack.

  • Câu 31: Thông hiểu
    Tính giá trị biểu thức

    Gọi M,\ mM, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)
= 2x^{3} + 3x^{2} - 1f(x)=2x3+3x21 trên đoạn \left\lbrack - 2; - \frac{1}{2}
ightbrackExtra \left or missing \right. Tính P = M -
mP=Mm.

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^{2} +
6x

    \Rightarrow \ f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 otin \left\lbrack - 2; - \frac{1}{2} ightbrack \\
x = - 1 \in \left\lbrack - 2; - \frac{1}{2} ightbrack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = - 5 \\
f( - 1) = 0 \\
f\left( - \frac{1}{2} ight) = - \frac{1}{2} \\
\end{matrix} ight. \Rightarrow
\left\{ \begin{matrix}
m = \min_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = - 5 \\
M = \max_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = 0 \\
\end{matrix} ight.

    \Rightarrow P = M - m = 5

  • Câu 32: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{4} - 2x^{2} + 5f(x)=x42x2+5 trên đoạn \lbrack - 2;2brack.[2;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 4x^3 -4x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 2;2brack \\
x = 1 \in \lbrack - 2;2brack \\
x = - 1 \in \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = f(2) = 13 \\
f( - 1) = f(1) = 4 \\
f(0) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;2brack}f(x) =
13

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (16%):
    2/3
  • Thông hiểu (69%):
    2/3
  • Vận dụng (16%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Bạn còn 2 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 2 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo

    Nhiều người đang xem

    🖼️

    Toán 12

    Xem thêm
    Chia sẻ
    Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
    Mã QR Code
    Đóng