Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
.
Phương trình hoành độ giao điểm .
![]()
.
Tích phân không chỉ là một phần quan trọng trong chương trình Toán 12, mà còn có nhiều ứng dụng thiết thực trong đời sống và kỹ thuật. Bài viết này tổng hợp các bài toán ứng dụng tích phân trong thực tế như tính diện tích, thể tích vật thể, quãng đường chuyển động,... Nội dung được biên soạn theo chuyên đề Toán 12 với đầy đủ đáp án và hướng dẫn giải chi tiết, giúp học sinh nắm chắc kiến thức, rèn luyện kỹ năng vận dụng vào các dạng đề nâng cao và chuẩn bị tốt cho kỳ thi THPT Quốc gia.
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
.
Phương trình hoành độ giao điểm .
![]()
.
Một họa tiết hình cánh bướm như hình vẽ bên.

Phần tô đậm được đính đá với giá thành . Phần còn lại được tô màu với giá thành
.
Cho Hỏi để trang trí
họa tiết như vậy cần số tiền bỏ ra là bao nhiêu?
Vì .
Parabol là: hoặc
Diện tích phần tô đậm là
Diện tích hình chữ nhật là
Diện tích phần trắng là
Tổng chi phí trang chí là:
Cho một mô hình mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài
; khi cắt hình này bởi mặt phẳng vuông góc với đấy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parobol cho bởi công thức
, với
là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Tính thể tích (theo đơn vị
) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị )


Xét một thiết diện parabol có chiều cao là và độ dài đáy
và chọn hệ trục
như hình vẽ trên.
Parabol có phương trình
Có
Diện tích của thiết diện:
,
Suy ra thể tích không gian bên trong của đường hầm mô hình:
Một viên gạch hoa hình vuông cạnh . Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô đen như hình vẽ dưới).

Tính diện tích mỗi cánh hoa của viên gạch.

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng ), các cánh hoa tạo bởi các đường parabol có phương trình
,
,
,
.
Diện tích một cánh hoa (nằm trong góc phàn tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số,
và hai đường thẳng
.
Do đó diện tích một cánh hoa bằng
.
Trong chương trình nông thôn mới của tỉnh Phú Yên, tại xã Hòa Mỹ Tây có xây một cây cầu bằng bê tông như hình vẽ (đường cong trong hình vẽ là các đường Parabol). Biết khối bê tông để đổ cây cầu có giá 5 triệu đồng. Tính số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu trên.

Chọn hệ trục như hình vẽ.
.
Gọi là Parabol đi qua hai điểm
Nên ta có hệ phương trình sau:
.
Gọi là Parabol đi qua hai điểm
Nên ta có hệ phương trình sau:
.
Ta có thể tích của bê tông là:
.
Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: triệu đồng
Tính diện tích của hình phẳng giới hạn bởi
,
,
,
.
Xét phương trình hoành độ giao điểm: .

Diện tích:
.
Trường Nguyễn Văn Trỗi muốn làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là mét, chiều rộng tiếp giáp với mặt đất là
mét. Giá thuê mỗi mét vuông là
đồng. Vậy số tiền nhà trường phải trả là bao nhiêu đồng?
Gọi phương trình parabol . Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ
sao cho
có đỉnh
(như hình vẽ).

Ta có hệ phương trình:
.
Vậy .
Dựa vào đồ thị, diện tích cửa parabol là:
.
Số tiền phải trả là: đồng.
Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng
và
biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một hình chữ nhật có hai cạnh là
và
.
Ta có diện tích thiết diện: .
Khi đó .
Người ta thay nước mới cho một bể bơi có dạng hình hộp chữ nhật có độ sâu là cm. Giả sử
là chiều cao (tính bằng cm) của mực nước bơm được tại thời điểm
giây, biết rằng tốc độ tăng của chiều cao mực nước tại giây thứ
là
và lúc đầu hồ bơi không có nước. Hỏi sau bao lâu thì bơm được số nước bằng
độ sâu của hồ bơi?
Gọi là thời điểm bơm được số nước bằng
độ sâu của bể (
tính bằng giây).
Ta có:
giây
Vậy sau 7237,6242 giây thì bơm được số nước bằng độ sâu của hồ bơi.
Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục :
.
Thể tích khối tròn xoay
.
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành
, các đường thẳng
,
.
Diện tích hình phẳng là
.
Hình phẳng giới hạn bởi các đường cong và
có diện tích bằng
là phân số tối giản. Kết luận nào sau đây đúng?
Ta có:
Gọi là diện tích hình phẳng giới hạn bởi các đường cong
và
.
Khi đó
(đvdt).
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
.
Xét phương trình .
Ta có:
Một cổng chào có dạng hình Parabol chiều cao , chiều rộng chân đế
. Người ta căng hai sợi dây trang trí
,
nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số
bằng

Chọn hệ trục tọa độ như hình vẽ.

Phương trình Parabol có dạng
.
đi qua điểm có tọa độ
suy ra:
.
Từ hình vẽ ta có: .
Diện tích hình phẳng giới bạn bởi Parabol và đường thẳng là
.
Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng
là
Từ giả thiết suy ra .
Vậy .
Khi cắt một vật thể hình chiếc niêm bởi mặt phẳng vuông góc với trục tại điểm có hoành độ
, mặt cắt là tam giác vuông có một góc
và độ dài một cạnh góc vuông là
(như hình vẽ). Tính thể tích vật thể hình chiếc niêm trên.

Diện tích tam giác vuông cân là:
Thể tích vật thể là:
.
Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn , trục nhỏ
. Biết cứ
dưa hấu sẽ làm được cốc sinh tố giá
đồng. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.
Đường elip có trục lớn , trục nhỏ
có phương trình:
.
Do đó thể tích quả dưa là
.
Do đó tiền bán nước thu được là đồng.
Một bác thợ xây bơm nước vào bể chứa nước. Gọi là thể tích nước bơm được sau
giây. Cho
và ban đầu bể không có nước. Sau 3 giây thì thể tích nước trong bể là
, sau
giây thì thể tích nước trong bể là
. Tính thể tích nước trong bể sau khi bơm được
giây.
Ta có:
(1)
(2)
Từ (1), (2) . Sau khi bơm
giây thì thể tích nước trong bể là:
=
.
Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường , trục
và hai đường thẳng
;
khi quay quanh trục hoành được tính bởi công thức nào?
Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số , trục
,
và
được tính bởi công thức
.
Dựng một lều trại có dạng parabol, với kích thước: nền trại là một hình chữ nhật có chiều rộng là mét, chiều sâu là
mét, đỉnh của parabol cách mặt đất là
mét. Tính thể tích phần không gian phía bên trong trại để số lượng người tham dự trại phù hợp?
Giả sử nền trại là hình chữ nhật ABCD có AB = 3 mét, BC = 6 mét, đỉnh của parabol là I.
Chọn hệ trục tọa độ Oxy sao cho: O là trung điểm của cạnh AB, A, B và I, phương trình của parabol có dạng .
Do I, A, B thuộc nên ta có .
Vậy thể tích phần không gian phía trong trại là .
Cho một vật thể bằng gỗ có dạng hình trụ với chiều cao và bán kính đáy cùng bằng. Cắt khối gỗ đó bởi một mặt phẳng đi qua đường kính của một mặt đáy của khối gỗ và tạo với mặt phẳng đáy của khối gỗ một góc
ta thu được hai khối gỗ có thể tích là
và
, với
. Tính thể tích
.



Khi cắt khối gỗ hình trụ ta được một hình nêm có thể tích như hình vẽ.
Chọn hệ trục tọa độ như hình vẽ.
Nửa đường tròn đường kính có phương trình là
,
.
Một mặt phẳng vuông góc với trục tại điểm
có hoành độ
, cắt hình nêm theo thiết diện là
vuông tại
và có
.
Ta có .
có diện tích
.
Thể tích hình nêm là
.
Gọi là phần giao của hai khối
hình trụ có bán kính
, hai trục hình trụ vuông góc với nhau như hình vẽ sau. Tính thể tích của khối
.


Đặt hệ toạ độ như hình vẽ, xét mặt cắt song song với mp
cắt trục
tại
, thiết diện mặt cắt luôn là hình vuông có cạnh
.
Do đó thiết diện mặt cắt có diện tích: .
Vậy .
Một học sinh làm mô hình chiếc lều vải mini có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc lều như hình vẽ bên dưới. Biết rằng ,
,
, đường cong
là một phần của parabol có đỉnh là điểm
. Tính thể tích của chiếc lều.

Kí hiệu hình vẽ như sau:

Ta gọi thể tích của chiếc lều là .
Thể tích của khối trụ có bán kính đáy bằng cm và đường cao
cm là
.
Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong và hai trục tọa độ quanh trục
là
.
Ta có
.
Chọn hệ trục tọa độ như hình vẽ.
Do parabol có đỉnh nên nó có phương trình dạng
.
Vì qua điểm
nên
. Do đó,
.
Từ đó suy ra (do
).
Suy ra
.
Do đó
.
Một chi tiết máy được thiết kế như hình vẽ bên.

Các tứ giác là các hình vuông cạnh
. Tứ giác
là hình chữ nhật có
. Mặt bên
được mài nhẵn theo đường parabol
có đỉnh parabol nằm trên cạnh
. Tính thể tích của chi tiết máy gần nhất với giá trị nào dưới đây?

Gọi hình chiếu của trên
và
là
và
.
Vật thể được chia thành hình lập phương có cạnh
, thể tích
và phần còn lại có thể tích
.
Khi đó thể tích vật thể .
Đặt hệ trục sao cho
trùng với
,
trùng với
,
trùng với tia
song song với
.
Khi đó Parabol có phương trình dạng
, đi qua điểm
do đó
.
Cắt vật thể bởi mặt phẳng vuông góc với và đi qua điểm
ta được thiết diện là hình chữ nhật
có cạnh là
và
Do đó diện tích
Áp dụng công thức thể tích vật thể ta có .
Từ đó
Tính thể tích của vật thể nằm giữa hai mặt phẳng
và
, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là một tam giác đều cạnh
.
Ta có diện tích thiết diện: .
.
Một ly rượu thủy tinh có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của ly (bổ dọc cốc thành 2 phần bằng nhau) là một đường Parabol. Tính thể tích tối đa mà ly có thể chứa được (làm tròn 2 chữ số thập phân)


Parabol có phương trình
Thể tích tối đa cốc: .
Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết
cm,
cm. Biết giá trang trí hoa văn
là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.


Đưa parabol vào hệ trục ta tìm được phương trình là:
.
Diện tích hình phẳng giới hạn bởi , trục hoành và các đường thẳng
,
là:
.
Tổng diện tích phần bị khoét đi:
.
Diện tích của hình vuông là: .
diện tích bề mặt hoa văn là: .
Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: đồng
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: