Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12 Phương trình mặt cầu cơ bản

Tổng hợp bài tập trắc nghiệm Toán học 12 Chuyên đề Phương trình mặt cầu trong không gian cơ bản, giúp học sinh luyện tập và củng cố hiệu quả kiến ​​thức lớp 12. Tài liệu đính kèm đáp án chi tiết, phù hợp để ôn thi THPT Quốc gia.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 46 câu
  • Điểm số bài kiểm tra: 46 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn phương trình mặt cầu thích hợp

    Mặt cầu có phương trình nào sau đây có tâm là I( - 1;1;0)\ ?

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Vậy phương trình mặt cầu thích hợp là: x^{2} + y^{2} + z^{2} + 2x - 2y + 1 =
0.

  • Câu 2: Nhận biết
    Xác định tâm và bán kính mặt cầu

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là: I(2;0;0),\ R =
\sqrt{3}.

  • Câu 3: Nhận biết
    Xác định phương trình mặt cầu

    Mặt cầu tâm I( - 1;2; - 3) và đi qua điểm A(2;0;0) có phương trình:

    Hướng dẫn:

    Ta có : \overrightarrow{IA} = (3; - 2;3)
\Rightarrow IA = \sqrt{22}.

    Vậy (S):(x + 1)^{2} + (y - 2)^{2} + (z +
3)^{2} = 22.

  • Câu 4: Thông hiểu
    Tìm phương trình mặt cầu thích hợp

    Phương trình mặt cầu tâm I(2;4;6) nào sau đây tiếp xúc với trục Ox:

    Hướng dẫn:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc trục Ox\Leftrightarrow R = d(I;Ox)

    \Leftrightarrow R = \sqrt{y_{I}^{2} +
z_{I}^{2}} = \sqrt{52}.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 52.

    Lưu ý : Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.

  • Câu 5: Thông hiểu
    Xác định phương trình mặt cầu

    Phương trình mặt cầu có tâm I\left(
\sqrt{5};3;9 \right) và tiếp xúc trục hoành là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
\sqrt{5};3;9 \right) trên Ox

    \Rightarrow H\left( \sqrt{5};0;0 \right)
\Rightarrow R = IH = \sqrt{90}

    Vậy phương trình mặt cầu là: \left( x -
\sqrt{5} \right)^{2} + (y - 3)^{2} + (z - 9)^{2} = 90.

  • Câu 6: Thông hiểu
    Xác định phương trình mặt cầu

    Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxz) có phương trình:

    Hướng dẫn:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc với mặt phẳng (Oxz): y = 0 \Leftrightarrow R = d\left( I;(Oxz)
\right)

    \Leftrightarrow R = \frac{|4|}{1} =
4.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 16.

  • Câu 7: Thông hiểu
    Xác định phương trình mặt cầu tương ứng

    Mặt cầu tâm I(2;4;6) tiếp xúc với trục Oz có phương trình:

    Hướng dẫn:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc trục Ox\Leftrightarrow R = d(I;Oz)

    \Leftrightarrow R = \sqrt{x_{I}^{2} +
y_{I}^{2}} = \sqrt{20}.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 20.

    Lưu ý : Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.

  • Câu 8: Nhận biết
    Xác định số phương trình mặt cầu

    Cho các phương trình sau: (x - 1)^{2} +
y^{2} + z^{2} = 1; x^{2} + (2y -
1)^{2} + z^{2} = 4;

    x^{2} + y^{2} + z^{2} + 1 = 0; (2x + 1)^{2} + (2y - 1)^{2} + 4z^{2} =
16.

    Số phương trình là phương trình mặt cầu là:

    Hướng dẫn:

    Ta có: (2x + 1)^{2} + (2y - 1)^{2} +
4z^{2} = 16 \Leftrightarrow \left(x + \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} + z^{2}= 4

    (x - 1)^{2} + y^{2} + z^{2} = 1 là phương trình của một mặt cầu.

    Có tất cả 3 phương trình mặt cầu

  • Câu 9: Thông hiểu
    Tính bán kính mặt cầu

    Bán kính mặt cầu đi qua bốn điểm M(1;0;1),\ N(1;0;0),\ P(2;1;0)Q(1;1;1) bằng:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz
+ d = 0 với a^{2} + b^{2} + c^{2} -
d > 0.

    Do (S) đi qua bốn điểm M, N, P, Q nên ta có hệ phương trình:

    \left\{ \begin{matrix}
- 2a - 2c + d = - 2 \\
- 2a + d = - 1 \\
- 4a - 2b + d = - 5 \\
- 2a - 2b - 2c + d = - 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = \dfrac{3}{2} \\
b = \dfrac{1}{2} \\
c = \dfrac{1}{2} \\
d = 2 \\
\end{matrix} \right..

    Vậy R = \sqrt{\left( \frac{3}{2}
\right)^{2} + \left( \frac{1}{2} \right)^{2} + \left( \frac{1}{2}
\right)^{2} - 2} = \frac{\sqrt{3}}{2}.

  • Câu 10: Nhận biết
    Tính đường kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;2;1)B(0 ;1 ; 1). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục hoành có đường kính là:

    Hướng dẫn:

    Gọi I(t;0;0) trên Ox.IA = IB \Rightarrow t = 2 \Rightarrow
I(2;0;0)

    \Rightarrow R = IA = \sqrt{6}
\Rightarrow đường kính bằng 2\sqrt{6}

  • Câu 11: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Phương trình ở các đáp án (x - 1)^{2} +
(y - 1)^{2} + (z - 1)^{2} = 6, (2x
- 1)^{2} + (2y - 1)^{2} + (2z + 1)^{2} = 6, (x + y)^{2} = 2xy - z^{2} + 3 - 6x đều thỏa mãn điều kiện phương trình mặt cầu. Ví dụ:

    (2x - 1)^{2} + (2y - 1)^{2} + (2z +
1)^{2} = 6

    \Leftrightarrow \left( x - \frac{1}{2}
\right)^{2} + \left( y - \frac{1}{2} \right)^{2} + \left( z +
\frac{1}{2} \right)^{2} = \frac{3}{2}.

    (x + y)^{2} = 2xy - z^{2} + 3 -
6x\Leftrightarrow x^{2} + y^{2} + z^{2} +
6x - 3 = 0.

  • Câu 12: Thông hiểu
    Xác định tọa độ tâm mặt cầu

    Cho các điểm A(0;1;3)B(2;2;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z -
3}{- 2}. Mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm là:

    Hướng dẫn:

    Gọi I(1 + t;2 - t;3 - 2t) trên dIA = IB \Rightarrow t =
\frac{3}{10} \Rightarrow I\left(
\frac{13}{10};\frac{17}{10};\frac{12}{5} \right).

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Cho điểm A(1; - 2;3) và đường thẳng d có phương trình \frac{x + 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{-
1}. Phương trình mặt cầu tâm A, tiếp xúc với d là:

    Hướng dẫn:

    Ta có:

    d(A,d) = \frac{\left| \left\lbrack
\overrightarrow{BA},\overrightarrow{a} \right\rbrack \right|}{\left|
\overrightarrow{a} \right|} = \frac{\sqrt{4 + 196 + 100}}{\sqrt{4 + 1 +
1}} = 5\sqrt{2}.

    Trong đó B( - 1;2; - 3) \in
d

    Phương trình mặt cầu tâm A(1; -
2;3), bán kính R =
5\sqrt{2}

    (S):(x–1)^{2} + (y + 2)^{2} + (z–3)^{2} = 50.

  • Câu 14: Nhận biết
    Viết phương trình mặt cầu

    Mặt cầu (S) tâm I(3; - 3;1) và đi qua A(5; - 2;1)có phương trình:

    Hướng dẫn:

    Bán kính mặt cầu là: R = IA = \sqrt{2^{2}
+ 1^{2} + 0^{2}} = \sqrt{5}

    Vậy ph­ương trình của mặt cầu là: (S):(x -
3)^{2} + (y + 3)^{2} + (z - 1)^{2} = 5.

  • Câu 15: Nhận biết
    Tìm điểm không nằm trên mặt cầu

    Cho mặt cầu (S):\ x^{2} + y^{2} + z^{2} -
4 = 0 và 4 điểm M(1;2;0),\
N(0;1;0),\ P(1;1;1), Q(1; -
1;2). Trong bốn điểm đó, có bao nhiêu điểm không nằm trên mặt cầu (S) ?

    Hướng dẫn:

    Lần lượt thay tọa độ các điểm M, N, P, Q vào phương trình mặt cầu (S), ta thấy chỉ có tọa độ điểm Q thỏa mãn.

  • Câu 16: Nhận biết
    Tính độ dài vecto

    Gọi I là tâm mặt cầu (S):x^{2} +
y^{2} + (z - 2)^{2} = 4. Độ dài \left| \overrightarrow{OI} \right| (O là gốc tọa độ) bằng:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(0;0;2) \Rightarrow \overrightarrow{OI} = (0;0;2)
\Rightarrow \left| \overrightarrow{OI} \right| = 2.

  • Câu 17: Thông hiểu
    Xác định phương trình mặt cầu

    Phương trình mặt cầu có tâm I(3;6; -
4) và cắt trục Oz tại hai điểm A, B sao cho diện tích tam giác IAB bằng 6\sqrt{5} là:

    Hướng dẫn:

    Gọi H là hình chiếu của I(3;6; -
4) trên Oz

    \Rightarrow H(0;0; - 4) \Rightarrow IH =
d(I;Ox) = \sqrt{45}

    S_{\Delta AIB} = \frac{IH.AB}{2}
\Rightarrow AB = \frac{2S_{\Delta AIB}}{IH} = 4

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 49

    Vậy phương trình mặt cầu là: (x - 3)^{2}
+ (y - 6)^{2} + (z + 4)^{2} = 49.

  • Câu 18: Thông hiểu
    Tìm phương trình tiếp diện của (S) tại một điểm

    Cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2}+ z^{2} = 14. Mặt cầu (S) cắt trục Oz tại AB (z_{A} <
0). Phương trình nào sau đây là phương trình tiếp diện của (S) tại B:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(2; -
1;0)

    A \in Oz \Rightarrow A\left( 0;0;z_{A}
\right) (z_{A} < 0)

    A \in (S) \Rightarrow (0 - 2)^{2} + (0 +
1)^{2} + {z_{A}}^{2} = 14

    \Rightarrow {z_{A}}^{2} = 9 \Rightarrow
z_{A} = - 3

    Nên mặt cầu (S) cắt trục Oz tại A(0;0;
- 3)B(0;0;3)

    Gọi (\alpha) là tiếp diện của mặt cầu (S) tại B.

    Mặt phẳng (\alpha) qua B(0;0;3) và có vectơ pháp tuyến \overrightarrow{n} = \overrightarrow{IB} = ( -
2;1;3)

    Vậy phương trình mặt phẳng (\alpha):2x -
y - 3z + 9 = 0.

  • Câu 19: Nhận biết
    Tìm phương trình mặt cầu

    Cho hai điểm A(1;0; - 3)B(3;2;1). Phương trình mặt cầu đường kính AB là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (2;2;4)
\Rightarrow AB = 2\sqrt{6}. Mặt cầu đường kính AB có tâm I là trung điểm AB nên I(2;1; - 1), bán kính R = \frac{AB}{2} = \sqrt{6}.

    Vậy đáp án cần tìm là: x^{2} + y^{2} +
z^{2} - 4x - 2y + 2z = 0..

  • Câu 20: Thông hiểu
    Chọn phương án đúng

    Cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Phương trình mặt cầu đi qua ba điểm A,B,C và có tâm thuộc mặt phẳng (P) là:

    Hướng dẫn:

    Phương mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By - 2Cz + D
= 0, ta có :

    \left\{ \begin{matrix}
A(2;0;1) \in (S) \\
B(1;0;0) \in (S) \\
C(1;1;1) \in (S) \\
I \in (P) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
- 4A - 2C + D = - 5\ \ \ \ \ (1) \\
- 2A + D = - 1\ \ \ \ \ \ \ (2) \\
- 2A - 2B - 2C + D = - 3\ \ \ \ \ (3) \\
A + B + C = 2\ \ \ \ \ \ (4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); kết hợp (4) ta được hệ:

    \left\{ \begin{matrix}
- 2A - 2C = - 4 \\
2B + 2C = 2 \\
A + B + C = 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
A = 1 \\
B = 0 \Rightarrow \\
C = 1 \\
\end{matrix} \right.\ D = 1

    Vậy phương trình mặt cầu là : x^{2} +
y^{2} + z^{2} - 2x - 2z + 1 = 0.

    Lưu ý : Ở câu này nếu nhanh trí chúng ta có thể sử dụng máy tính cầm tay thay ngay tọa độ tâm của các mặt cầu ở 4 đáp án trên vào phương trình mặt phẳng (P) để loại ngay được các đáp án có tọa độ tâm không thuộc mặt phẳng (P)

  • Câu 21: Thông hiểu
    Tính bán kính của mặt cầu (S)

    Cho các điểm A( - 2;4;1)B(2;0;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y + 2}{- 1} = \frac{z -
3}{- 2}. Gọi (S) là mặt cầu đi qua A, B và có tâm thuộc đường thẳng d. Bán kính mặt cầu (S) bằng:

    Hướng dẫn:

    Gọi I(1 + 2t; - 2 - t;3 - 2t) trên dIA = IB \Rightarrow t =
\frac{- 11}{4} \Rightarrow IA = \frac{\sqrt{1169}}{4}.

  • Câu 22: Nhận biết
    Xác định phương trình mặt cầu

    Phương trình nào sau đây là phương trình mặt cầu?

    Hướng dẫn:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Từ đó ta xác định được phương trình mặt cầu cần tìm là: {x^2} + {y^2} + {z^2} - 2x = 0.

  • Câu 23: Thông hiểu
    Tìm điểm thuộc mặt cầu (S)

    Mặt cầu (S) có tâm I(2;1; -1) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB vuông. Điểm nào sau đây thuộc mặt cầu (S):

    Hướng dẫn:

    Gọi H là hình chiếu của I(2;1; -1) trên Ox\Rightarrow
H(2;0;0) \Rightarrow IH = d(I,\ Ox) = \sqrt{2}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 4

    Vậy phương trình mặt cầu là : (x - 2)^{2}
+ (y - 1)^{2} + (z + 1)^{2} = 4

    \Rightarrow (2;1;1) \in
(S).

  • Câu 24: Nhận biết
    Tìm tọa độ tâm mặt cầu (S)

    Mặt cầu (S):(x + y)^{2} = 2xy - z^{2} + 1
- 4x có tâm là:

    Hướng dẫn:

    Biến đổi (x + y)^{2} = 2xy - z^{2} + 1 -
4x \Leftrightarrow x^{2} + y^{2} + z^{2} + 4x - 1 = 0.

    Vậy mặt cầu có tâm I( -
2;0;0).

  • Câu 25: Nhận biết
    Tìm tâm mặt cầu

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x +
2y + 1 = 0 có tâm là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x +
2y + 1 = 0 có tâm là I(4; -
1;0).

  • Câu 26: Nhận biết
    Tính bán kính mặt cầu

    Mặt cầu (S): 3x^{2} + 3y^{2} + 3z^{2} - 6x + 12y + 2 =
0 có bán kính bằng:

    Hướng dẫn:

    Biến đổi 3x^{2} + 3y^{2} + 3z^{2} - 6x +
12y + 2 = 0 \Leftrightarrow x^{2} + y^{2} + z^{2} - 2x + 4y +
\frac{2}{3} = 0 có tâm I(1; -
2;0), bán kính R =
\sqrt{\frac{13}{3}}.

  • Câu 27: Thông hiểu
    Viết phương trình mặt cầu

    Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxy) có phương trình:

    Hướng dẫn:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc với mặt phẳng (Oxy): z = 0 \Leftrightarrow R = d\left( I;(Oxy)
\right)

    \Leftrightarrow R = \frac{|6|}{1} =
6.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 36.

  • Câu 28: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Ở các đáp án 2x^{2} + 2y^{2} = (x +
y)^{2} - z^{2} + 2x - 1, x^{2} +
y^{2} + z^{2} + 2x - 2y + 1 = 0, (x
+ y)^{2} = 2xy - z^{2} + 1 - 4x đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án x^{2} +
y^{2} + z^{2} - 2x = 0. thì phương trình: 2x^{2} + 2y^{2} = (x + y)^{2} - z^{2} + 2x - 1
\Leftrightarrow x^{2} + y^{2} + z^{2} - 2xy - 2x + 1 = 0 không đúng dạng phương trình mặt cầu.

  • Câu 29: Nhận biết
    Chọn đáp án thích hợp

    Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?

    Hướng dẫn:

    Mặt cầu tâm O(0;0;0) và bán kính R = 3 có phương trình: (S):x^{2} +
y^{2} + z^{2} = 9.

  • Câu 30: Thông hiểu
    Tìm tâm mặt cầu

    Cho các điểm A(1;3;0)B(2;1;1) và đường thẳng d:\frac{x}{2} = \frac{y - 3}{1} =
\frac{z}{1}. Mặt cầu (S)đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm của (S) là:

    Hướng dẫn:

    Gọi I(2t;3 + t;t) trên dIA = IB \Rightarrow t = 4
\Rightarrow I(8;7;4).

  • Câu 31: Thông hiểu
    Tìm mặt cầu ngoại tiếp tứ diện

    Cho ba điểm A(6; - 2;3), B(0;1;6), C(2;0; - 1), D(4;1;0). Khi đó mặt cầu ngoại tiếp tứ diện ABCD có phương trình là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By -
2Cz + D = 0, ta có:

    \left\{ \begin{matrix}
A(6; - 2;3) \in (S) \\
B(0;1;6) \in (S) \\
C(2;0; - 1) \in (S) \\
D(4;1;0) \in (S) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
49 - 12A + 4B - 6C + D = 0(1) \\
37 - 2B - 12C + D = 0(2) \\
5 - 4A + 2C + D = 0(3) \\
17 - 8A - 2B + D = 0(4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); (3) - (4)ta được hệ:

    \left\{ \begin{matrix}
- 12A + 6B + 6C = - 12 \\
4A - 2B - 14C = - 32 \\
4A + 2B + 2C = 12 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
A = 2 \\
B = - 1 \Rightarrow \\
C = 3 \\
\end{matrix} \right.\ D = - 3

    Vậy phương trình măt cầu là: x^{2} +
y^{2} + z^{2} - 4x + 2y - 6z - 3 = 0 .

    Lưu ý : Ở bài này máy tính Casio giúp chúng ta giải nhanh chóng hệ phương trình bậc nhất ba ấn được tạo ra để tìm các hệ số của phương trình mặt cầu tổng quát. (Ta cũng có thể dùng máy tính cầm tay thay trực tiếp tọa độ các điểm vào từng đáp án và tìm ra đáp án đúng)

  • Câu 32: Nhận biết
    Tìm tâm mặt cầu

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 9 có tâm là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2} có tâm I(a;b;c), bán kính R.

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 9 có tâm là I\left( {1; - 2;0} \right).

  • Câu 33: Thông hiểu
    Chọn đáp án đúng

    Phương trình mặt cầu có tâm I\left(
3;\sqrt{3}; - 7 \right) và tiếp xúc trục tung là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
3;\sqrt{3}; - 7 \right) trên Oy

    \Rightarrow H\left( 0;\sqrt{3};0 \right)
\Rightarrow R = IH = \sqrt{58}

    Vậy phương trình mặt cầu là: (x - 3)^{2}+ \left( y - \sqrt{3} \right)^{2} + (z + 7)^{2} = 58.

  • Câu 34: Thông hiểu
    Tìm phương trình mặt cầu

    Cho mặt phẳng (P):2x + 3y + z - 2 =
0 . Mặt cầu (S) có tâm I thuộc trục Oz, bán kính bằng \frac{2}{\sqrt{14}} và tiếp xúc mặt phẳng (P) có phương trình:

    Hướng dẫn:

    Vì tâmI \in Oz \Rightarrow
I(0;0;z)

    Mặt cầu (S)có tâm I tiếp xúc với mặt phẳng

    (P) \Leftrightarrow d\left( I,(\beta) \right) = R
\Leftrightarrow \frac{|2.0 + 3.0 + 1.z - 2|}{\sqrt{2^{2} + 3^{2} +
1^{2}}} = \frac{2}{\sqrt{14}}

    \Leftrightarrow |z - 2| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
z = 0 \Rightarrow I(0;0;0) \\
z = 4 \Rightarrow I(0;0;4) \\
\end{matrix} \right.

    Vậy phương trình mặt cầu .(S):x^{2} +
y^{2} + z^{2} = \frac{2}{7} hoặc (S):x^{2} + y^{2} + (z - 4)^{2} =
\frac{2}{7}.

  • Câu 35: Thông hiểu
    Viết phương trình mặt cầu

    Phương trình mặt cầu có tâm I\left( -
\sqrt{6}; - \sqrt{3};\sqrt{2} - 1 \right) và tiếp xúc trục Oz là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
- \sqrt{6}; - \sqrt{3};\sqrt{2} - 1 \right) trên Oz

    \Rightarrow H\left( 0;0;\sqrt{2}
- 1 \right) \Rightarrow R = IH = 3.

    Vậy phương trình mặt cầu là: \left( x +
\sqrt{6} \right)^{2} + \left( y + \sqrt{3} \right)^{2} + \left( z -
\sqrt{2} + 1 \right)^{2} = 9.

  • Câu 36: Thông hiểu
    Xác định tâm mặt cầu

    Nếu mặt cầu (S) đi qua bốn điểm M(2;2;2),\ N(4;0;2),\ P(4;2;0)Q(4;2;2) thì tâm I của (S) có toạ độ là:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S) x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d =
0, \left( a^{2} + b^{2} + c^{2} - d
> 0 \right).

    Do M(2;2;2) \in (S)
\Leftrightarrow - 4a - 4b - 4c + d
= - 12 (1)

    N(4;0;2) \in (S) \Leftrightarrow - 8a -
4c + d = - 20 (2)

    P(4;2;0) \in (S) \Leftrightarrow - 8a -
4b + d = - 20 (3)

    Q(4;2;2) \in (S) \Leftrightarrow - 8a -
4b - 4c + d = - 24 (4)

    Giải hệ (1), (2), (3), (4) ta có a = 1,\
b = 2,\ c = 1,\ d = - 8, suy ra mặt cầu (S) có tâm I(1;2;1)

  • Câu 37: Nhận biết
    Tính đường kính mặt cầu

    Cho các điểm A(1;3;1)B(3;2;2). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz có đường kính là:

    Hướng dẫn:

    Gọi I(0;0;t) trên OzIA = IB \Rightarrow t = 3 \Rightarrow
I(0;0;3)

    \Rightarrow R = IA = \sqrt{14}
\Rightarrow đường kính là: 2\sqrt{14}.

  • Câu 38: Thông hiểu
    Chọn đáp án đúng

    Cho điểm I(0;0;3) và đường thẳng d:\left\{ \begin{matrix}
x = - 1 + t \\
y = 2t \\
z = 2 + t \\
\end{matrix} \right.\ . Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A,\ B sao cho tam giác IAB vuông là:

    Hướng dẫn:

    Gọi H( - 1 + t;2t;2 + t) \in d là hình chiếu vuông góc của I lên đường thẳng d \Rightarrow \overrightarrow{IH} = ( - 1 + t;2t; -
1 + t)

    Ta có vectơ chỉ phương của d: \overrightarrow{a_{d}} = (1;2;1)IH\bot d

    \Rightarrow
\overrightarrow{IH}.\overrightarrow{a_{d}} = 0 \Leftrightarrow - 1 + t +
4t - 1 + t = 0 \Leftrightarrow - 2 + 6t = 0 \Leftrightarrow t =
\frac{1}{3} \Rightarrow H\left( - \frac{2}{3};\frac{2}{3};\frac{7}{3}
\right)

    \Rightarrow IH = \sqrt{\left( \frac{2}{3}
\right)^{2} + \left( \frac{2}{3} \right)^{2} + \left( \frac{2}{3}
\right)^{2}} = \frac{2\sqrt{3}}{3}

    Vì tam giác IAB vuông tại IIA = IB =
R. Suy ra tam giác IAB vuông cân tại I, do đó bán kính:

    R = IA = ABcos45^{0} =
2IH.\frac{\sqrt{2}}{2} = \sqrt{2}IH = \sqrt{2}.\frac{2\sqrt{3}}{3} =
\frac{2\sqrt{6}}{3}

    Vậy phương trình mặt cầu (S):x^{2} +
y^{2} + (z - 3)^{2} = \frac{8}{3}.

  • Câu 39: Nhận biết
    Xác định đường kính của mặt cầu

    Cho các điểm A(2;1; - 1)B(1;0;1). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oy có đường kính là:

    Hướng dẫn:

     

    Gọi I(0;t;0) trên OyIA = IB \Rightarrow t = 2 \Rightarrow
I(0;2;0)

    \Rightarrow R = IA = \sqrt{6}
\Rightarrow đường kính bằng 2\sqrt{6}.

  • Câu 40: Thông hiểu
    Chọn đáp án thích hợp

    Cho 4 điểm A(3; - 2; - 2),\ B(3;2;0),\
C(0;2;1)D( - 1;1;2). Mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD) có phương trình là:

    Hướng dẫn:

    Mặt phẳng (BCD)đi qua B(3;2;0)và có vectơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{BC},\overrightarrow{BD} \right\rbrack =
(1;2;3)

    \Rightarrow (BCD):x + 2y + 3z - 7 =
0

    Vì mặt cầu (S)có tâm A tiếp xúc với mặt phẳng (BCD)nên bán kính

    R = d\left( A,(BCD) \right) =
\frac{\left| 3 + 2.( - 2) + 3.( - 2) - 7 \right|}{\sqrt{1^{2} + 2^{2} +
3^{2}}} = \sqrt{14}.

    Vậy phương trình mặt cầu (S):(x - 3)^{2}
+ (y + 2)^{2} + (z + 2)^{2} = 14.

  • Câu 41: Nhận biết
    Xác định đường kính mặt cầu

    Đường kính của mặt cầu (S):x^{2} + y^{2}
+ (z - 1)^{2} = 4 bằng:

    Hướng dẫn:

    Mặt cầu (S) có bán kính R = 2 suy ra đường kính có độ dài: 2R = 4.

    Đường kính của mặt cầu (S):x^{2} + y^{2}
+ (z - 1)^{2} = 4 bằng: 4.

  • Câu 42: Nhận biết
    Tìm phương trình mặt cầu

    Phương trình mặt trình mặt cầu có đường kính AB với A(1;3;2),\ B(3;5;0) là:

    Hướng dẫn:

    Trung điểm của đoạn thẳng ABI(2;4;1), AB = \sqrt{2^{2} + 2^{2} + ( - 2)^{2}} = 2\sqrt{3}

    Mặt cầu đường kính AB có tâm I(2;4;1), bán kính R = \frac{AB}{2} = \sqrt{3}

    Vậy ph­ương trình của mặt cầu là: (x -2)^{2} + (y - 4)^{2} + (z - 1)^{2} = 3.

  • Câu 43: Nhận biết
    Viết phương trình mặt cầu

    Phương trình mặt cầu có tâm I( - 1;2; -
3), bán kính R = 3 là:

    Hướng dẫn:

    Mặt cầu có tâm I( - 1;2; - 3), bán kính R = 3 có phương trình: (x + 1)^{2} + (y - 2)^{2} + (z + 3)^{2} =
9.

  • Câu 44: Thông hiểu
    Xác định phương trình mặt cầu

    Cho hai mặt phẳng (P\ \ ):2x + 3y - z + 2
= 0, (Q):2x - y - z + 2 =
0. Phương trình mặt cầu (S) tiếp xúc với mặt phẳng (P) tại điểmA\ (1; - 1;1\ ) và có tâm thuộc mặt phẳng (Q) là:

    Hướng dẫn:

    Gọi d đường thẳng đi qua A và vuông góc với (P), ta có: d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 1 - t \\
\end{matrix} \right.

    Tâm I \in d \Rightarrow I(\ 1 + 2t; - 1 +
3t;1 - t\ ).

    I \in (Q) \Rightarrow 2(1 + 2t) - ( - 1
+ 3t) - (1 - t) + 2 = 0 \Leftrightarrow t = - 2 \Rightarrow I( - 3; -
7;3)

    Bán kính mặt cầu là R = IA =
2\sqrt{14}.

    Phương trình mặt cầu (S):(x + 3)^{2} + (y
+ 7)^{2} + (z - 3)^{2} = 56 .

  • Câu 45: Nhận biết
    Xác định tọa độ điểm thuộc mặt cầu

    Mặt cầu (S):\ x^{2} + y^{2} + z^{2} - 2x
+ 10y + 3z + 1 = 0 đi qua điểm có tọa độ nào sau đây?

    Hướng dẫn:

    Lần lượt thay tọa độ các điểm vào phương trình mặt cầu. Tọa độ điểm nào thỏa mãn phương trình thì điểm đó thuộc mặt cầu.

    Kiểm tra đáp án thu được kết quả là: điểm (4; - 1;0). thuộc mặt cầu đã cho.

  • Câu 46: Thông hiểu
    Tìm tọa độ tâm mặt cầu (S)

    Cho các điểm A(1;1;3)B(2;2;0) và đường thẳng d:\frac{x}{1} = \frac{y - 2}{- 1} = \frac{z -
3}{1}. Mặt cầu (S) đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm (S) là:

    Hướng dẫn:

    Gọi I(t;2 - t;3 + t) trên dIA = IB \Rightarrow t = -
\frac{11}{6} \Rightarrow I\left( \frac{- 11}{6};\frac{23}{6};\frac{7}{6}
\right).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (50%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Thi THPT Quốc gia môn Toán

Xem thêm