Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Bạn đã dùng hết 2 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12 Tương giao đồ thị hàm số Vận dụng cao

VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Bài toán tương giao đồ thị hàm số Nâng cao. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 33 câu
  • Điểm số bài kiểm tra: 33 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2x^{2}y=x42x2 có đồ thị (C)(C), có bao nhiêu đường thẳng ddcó đúng 3 điểm chung với đồ thị (C)(C) và các điểm chung có hoành độ x_{1},x_{2},x_{3}x1,x2,x3 thỏa mãn\ {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1 x13+x23+x33=1.

    Hướng dẫn:

    Vì đường thẳng d cắt đồ thị hàm số (C) tại 3 điểm phân biệt nên đường thẳng dlà đường thẳng có hệ số góc dạng y = ax + b.

    Phương trình hoành độ giao điểm của d (C) là: x^{4}
- 2x^{2} = ax + b.

    Mà phương trình là phương trình bậc 4 nên phương trình muốn có 3 nghiệm phân biệt thì trong đó sẽ có 1 nghiệm kép gọi là x_{1}, hai nghiệm còn lại là x_{2},x_{3}.

    Suy ra đường thẳng dlà tiếp tuyến của đồ thị (C), không mất tính tổng quát giả sử đường thẳng dtiếp xúc với đồ thị hàm số (C)tại x_{1}.

    Gọi dlà tiếp tuyến của (C)tại điểm có hoành độ x_{1}, d cắt (C) tại 2 điểm phân biệt có hoành độ x_{2},x_{3}( eq x_{1}) thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Ta có: d:y = (4{x_{1}}^{3} - 4x_{1})(x -
x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}.

    Phương trình hoành độ giao điểm của d(C)là:

    x^{4} - 2x^{2} = (4{x_{1}}^{3} -
4x_{1})(x - x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}(1)

    Yêu cầu bài toán \Leftrightarrow
(1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    (1) \Leftrightarrow (x -
x_{1})^{2}(x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2) = 0\Leftrightarrow
\left\{ \begin{matrix}
x = x_{1} \\
f(x) = x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2 = 0 \\
\end{matrix} ight.

    Để phương trình (1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3}
+ {x_{3}}^{3} = - 1thì phương trình f(x) = 0 phải có 2 nghiệm phân biệt x_{2},x_{3} khác x_{1}và thỏa mãn định lí Vi – ét:

    \left\{ \begin{matrix}
x_{2} + x_{3} = - 2x_{1} \\
x_{2}.x_{3} = 3{x_{1}}^{2} - 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
\Delta' = {x_{1}}^{2} - 3{x_{1}}^{2} + 2 > 0 \\
{x_{1}}^{2} + 2{x_{1}}^{2} + 3{x_{1}}^{2} - 2 eq 0 \\
{x_{1}}^{3} + (x_{2} + x_{3})^{3} - 3x_{2}x_{3}(x_{2} + x_{3}) = - 1 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
- 1 < x_{1} < 1 \\
3{x_{1}}^{2} - 1 eq 0 \\
{x_{1}}^{3} + ( - 2x_{1})^{3} - 3(3{x_{1}}^{2} - 2).( - 2x_{1}) = - 1 \\
\end{matrix} ight.

     

    \Leftrightarrow x_{1} = \frac{- 11 +
\sqrt{165}}{22}.

    Vậy có đúng 1 đường thẳng thỏa mãn yêu cầu bài toán.

  • Câu 2: Vận dụng
    Tìm m tham số m thỏa mãn yêu cầu

    Tất cả giá trị của tham số mm để đồ thị hàm số y = x^{3} + \left( m^{2} - 2
ight)x + 2m^{2} + 4Extra \left or missing \right cắt các trục tọa độ Ox,OyOx,Oylần lượt tại A,BA,Bsao cho diện tích tam giác OABOAB bằng 8 là

    Hướng dẫn:

    Giao điểm của đồ thị hàm số đã cho với trục tung là B\left( 0\ ;\ 2m^{2} + 4 ight)

    Phương trình hoành độ giao điểm của đồ thị đã cho với trục hoành là:

    x^{3} + \left( m^{2} - 2 ight)x +
2m^{2} + 4 = 0\Leftrightarrow (x + 2)\left( x^{2} - 2x + m^{2} + 2
ight) = 0

    \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
(x - 1)^{2} + m^{2} + 1 = 0\ \ \ \ (vn) \\
\end{matrix} ight.

    Giao điểm của đồ thị đã cho với trục hoành là A( - 2;0).

    Diện tích tam giác ABC là:

    S = \frac{1}{2}OA.OB = \frac{1}{2}.2.\left( 2m^{2}
+ 4 ight) = 8 \Rightarrow m = \pm \sqrt{2}.

  • Câu 3: Vận dụng
    Tìm m để AB đạt giá trị nhỏ nhất

    Tìm mm để đường thẳng y = 2x + my=2x+m cắt đồ thị hàm số y = \frac{x + 3}{x + 1}y=x+3x+1 tại hai điểm A,\ BA, B sao cho độ dài ABAB là nhỏ nhất.

    Hướng dẫn:

    Gọi hàm số y = \frac{x + 3}{x +
1} có đồ thị là (C) và đường thẳng y = 2x + m có đồ thị là (d).

    Xét phương trình hoành độ giao điểm của (C)(d): \frac{x
+ 3}{x + 1} = 2x + m,\ \ \forall x eq - 1.

    \Leftrightarrow x + 3 = 2x^{2} + 2x + mx
+ m\ \ \  \Leftrightarrow 2x^{2} + (m + 1)x + m - 3 = 0,\ \ \forall x
eq 1\ \ \ \ (1)

    Để (d) cắt (C) tại hai điểm A,B\ \  \LeftrightarrowPhương trình (1) có hai nghiệm phân biệt khác - 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
g( - 1) eq 0 \\
\end{matrix} ight. với g(x) =
2x^{2} + (m + 1)x + m - 3

    \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - 4.2.(m - 3) > 0 \\
- 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow m^{2} - 6m + 25 > 0,\ \
\forall m.

    Giả sử hoành độ giao điểm của (C)(d)x_{1},x_{2}.

    Khi đó A\left( x_{1};2x_{1} + m
ight)B\left( x_{2};2x_{2} + m ight).

    Theo hệ thức Vi-ét ta có x_{1} + x_{2} =
- \frac{m + 1}{2};\ \ \ x_{1}x_{2} = \frac{m - 3}{2}

    Ta có AB = \sqrt{\left( x_{2} - x_{1}
ight)^{2} + \left( 2x_{2} - 2x_{1} ight)^{2}}= \sqrt{5\left( x_{1}
- x_{2} ight)^{2}} = \sqrt{5\left( x_{1} + x_{2} ight)^{2} -
20x_{1}x_{2}}

    AB = \sqrt{5.\left( \frac{m + 1}{2}
ight)^{2} - 20.\frac{m - 3}{2}}

    = \sqrt{\frac{5m^{2} + 10m + 5 - 40m +
120}{4}}

    = \frac{\sqrt{5(m - 3)^{2} + 80}}{2}
\geq 2\sqrt{5}.

    Dấu " = " xảy ra khi và chỉ khi m = 3.

    Vậy m = 3 thì độ dài AB đạt giá trị nhỏ nhất bằng 2\sqrt{5}.

  • Câu 4: Vận dụng cao
    Tính giá trị của biểu thức

    Cho hàm số y = x^{4} + 2mx^{2} +
my=x4+2mx2+m (với mmlà tham số thực). Tập tất cả các giá trị của tham số mm để đồ thị hàm số đã cho cắt đường thẳng y = - 3y=3 tại bốn điểm phân biệt, trong đó có một điểm có hoành độ lớn hơn 22 còn ba điểm kia có hoành độ nhỏ hơn 11, là khoảng (a;b)(a;b) (với a,b\mathbb{\in Q}a,bQ, aa,bb là phân số tối giản). Khi đó, 15ab15ab nhận giá trị nào sau đây?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm x^{4}
+ 2mx^{2} + m = - 3.

    Đặt x^{2} = t, t \geq 0. Khi đó phương trình trở thành t^{2} + 2mt + m + 3 = 0 (1)

    và đặt f(t) = t^{2} + 2mt + m +
3.

    Để đồ thị hàm số cắt đường thẳng y = -
3 tại 4 điểm phân biệt thì phương trình (1) có hai nghiệm thỏa mãn 0 < t_{1} < t_{2} và khi đó hoành độ bốn giao điểm là - \sqrt{t_{2}}
< - \sqrt{t_{1}} < \sqrt{t_{1}} < \sqrt{t_{2}}.

    Do đó, từ điều kiện của bài toán suy ra \left\{ \begin{matrix}
\sqrt{t_{2}} > 2 \\
\sqrt{t_{1}} < 1 \\
\end{matrix} ight. hay 0 <
t_{1} < 1 < 4 < t_{2}.

    Điều này xảy ra khi và chỉ khi \left\{
\begin{matrix}
f(0) > 0 \\
f(1) < 0 \\
f(4) < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m + 3 > 0 \\
3m + 4 < 0 \\
9m + 19 < 0 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m < -
\frac{19}{9}.

    Vậy a = - 3, b = - \frac{19}{9} nên 15ab = 95.

  • Câu 5: Thông hiểu
    Xác định các giá trị nguyên của tham số m

    Cho hàm số f(x) = (x - 1).(x - 2)...(x -
2023).f(x)=(x1).(x2)...(x2023). Có bao nhiêu giá trị nguyên của mm thuộc đoạn \lbrack - 2023\ ;\ 2023brack[2023 ; 2023brack để phương trình ff(x)=m.f(x) có 2023 nghiệm phân biệt?

    Hướng dẫn:

    Ta có nhận xét: khi f(x) = 0 thì phương trình f'(x) = m.f(x) vô nghiệm.

    Do đó: f'(x) = m.f(x) \Leftrightarrow
m = \frac{f'(x)}{f(x)}.

    Xét hàm số g(x) = \frac{f'(x)}{f(x)}
= \frac{1}{x - 1} + \frac{1}{x - 2} + \frac{1}{x - 3} + \ldots +
\frac{1}{x - 2023}.

    Ta có

    g'(x) = \frac{- 1}{(x - 1)^{2}} +
\frac{- 1}{(x - 2)^{2}} + \frac{- 1}{(x - 3)^{2}}+ \ldots + \frac{- 1}{(x - 2023)^{2}} <
0,\forall x\mathbb{\in R}\backslash\left\{ 1;2;3...;2023
ight\}

    Bảng biến thiên:

    Dựa vào BBT, phương trìnhf'(x) =
m.f(x) có 2023 nghiệm phân biệt khi và chỉ khi m > 0 hoặc m < 0.

    Kết hợp với điều kiện mlà số nguyên thuộc \lbrack - 2023\ ;\
2023brack nên

    m \in \left\{
n\mathbb{\in Z}| - 2023 \leq n \leq 2023,\ n eq 0
ight\}.

    Vậy có tất cả 4046 giá trịm thỏa yêu cầu bài toán.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Cho hai hàm số y = x^{2} + x - 1y=x2+x1y = x^{3} + 2x^{2} + mx - 3y=x3+2x2+mx3. Giá trị của tham số mm để đồ thị của hai hàm số có 33 giao điểm phân biệt và 33 giao điểm đó nằm trên đường tròn bán kính bằng 33 thuộc vào khoảng nào dưới đây?

    Hướng dẫn:

    Giả sử m là số thực thỏa mãn bài toán.

    Phương trình hoành độ giao điểm giữa hai đồ thị là

    x^{2} + x - 1 = x^{3} + 2x^{2} + mx - 3
\Leftrightarrow x^{3} + x^{2} + (m - 1)x - 2 = 0\ \ \ \ \
(1).

    Gọi M\left( x_{0};\ y_{0}
ight) là một trong 3 giao điểm. Ta có

    \left\{ \begin{matrix}
y_{0} = x_{0}^{2} + x_{0} - 1 \\
x_{0}^{3} + x_{0}^{2} + (m - 1)x_{0} - 2 = 0 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
y_{0}^{2} = x_{0}^{4} + 2x_{0}^{3} - x_{0}^{2} - 2x_{0} + 1(2) \\
x_{0}^{3} + x_{0}^{2} + (m - 1)x_{0} - 2 = 0(3) \\
\end{matrix} ight..

    Từ (2)(3) suy ra

    y_{0}^{2} = \left( x_{0} + 1
ight)\left\lbrack x_{0}^{3} + x_{0}^{2} + (m - 1)x_{0} - 2
ightbrack + ( - m - 1)x_{0}^{2}
- (m - 1)x_{0} + 3

    = ( - m - 1)x_{0}^{2} - (m - 1)x_{0} +
3

    Hay y_{0}^{2} + x_{0}^{2} = - mx_{0}^{2}
- (m - 1)x_{0} + 3

    = - m\left( y_{0} - x_{0} + 1 ight) -
(m - 1)x_{0} + 3.

    Rút gọn ta được x_{0}^{2} + y_{0}^{2} -
x_{0} + my_{0} + m - 3 = 0(4).

    Đây là phương trình đường tròn khi \left(
- \frac{1}{2} ight)^{2} + \left( \frac{m}{2} ight)^{2} - m + 3 >
0\ \ \ \ \ (*) .

    Với điều kiện (*) thì M\left( x_{0};y_{0} ight) thuộc đường tròn có bán kính R = \sqrt{\left( -
\frac{1}{2} ight)^{2} + \left( \frac{m}{2} ight)^{2} - m +
3}.

    Theo đề bài R = 3 \Leftrightarrow
\frac{m^{2} + 1}{4} - m + 3 = 9 \Leftrightarrow m^{2} - 4m - 23 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 2 + 3\sqrt{3} \\
m = 2 - 3\sqrt{3} \\
\end{matrix} ight..

    Thử lại.

    Với m = 2 + 3\sqrt{3} thì phương trình (1)1 nghiệm. Do đó, m = 2 + 3\sqrt{3} không thỏa mãn.

    Với m = 2 - 3\sqrt{3} thì phương trình (1)3 nghiệm và cũng thỏa mãn (*).

    Vậy giá trị m cần tìm là m = 2 - 3\sqrt{3} \in ( - 4;\  - 2).

  • Câu 7: Vận dụng
    Tìm các giá trị thực tham số m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số mmđể đường thẳng y = mx - m + 1y=mxm+1cắt đồ thị hàm số y = x^{3} - 3x^{2} + x + 2y=x33x2+x+2 tại ba điểm A,B,CA,B,C phân biệt sao AB = BCAB=BC

    Hướng dẫn:

    Ta có phương trình hoành độ giao điểm là: x^{3} - 3x^{2} + x + 2 = mx - m + 1
\Leftrightarrow x^{3} - 3x^{2} + x - mx + m + 1 = 0\ \ \ \
(1)

    \Leftrightarrow (x - 1)\left( x^{2} - 2x
- m - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x^{2} - 2x - m - 1 = 0 \\
\end{matrix} ight..

    Để đường thẳng cắt đồ thị hàm số tại ba điểm phân biệt thì phương trình x^{2} - 2x - m - 1 = 0có hai nghiệm phân biệt khác 1 \Leftrightarrow \left\{ \begin{matrix}
1 + m + 1 > 0 \\
1 - 2 - m - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m eq - 2 \\
\end{matrix} ight.\  \Leftrightarrow m > - 2.

    Với m > - 2 thì phương trình (1) có ba nghiệm phân biệt là 1,x_{1},x_{2} (x_{1},x_{2} là nghiệm của x^{2} - 2x - m - 1 = 0).

    \frac{x_{1} + x_{2}}{2} = 1 suy ra điểm có hoành độ x = 1luôn là trung điểm của hai điểm còn lại nên luôn có 3 điểm A,B,C thoả mãn AB = BC

    Vậy m > - 2

  • Câu 8: Thông hiểu
    Tính tổng các phần tử tập S

    Cho hàm số y = \frac{x}{x - 1}\ \
(C)y=xx1  (C) và đường thẳng \ d:y = - x +
m d:y=x+m. Gọi SS là tập các số thực mm để đường thẳng dd cắt đồ thị (C)(C) tại hai điểm phân biệt A\ ,\ BA , B sao cho tam giác OABOAB (OO là gốc tọa độ) có bán kính đường tròn ngoại tiếp bằng 2\sqrt{2}22. Tổng các phần tử của SS bằng

    Hướng dẫn:

    Xét phương trình \frac{x}{x - 1} = - x +
m,\ \(điều kiện x eq
1).

    Phương trình tương đương x^{2} - mx + m =
0 (1).

    Đồ thị (C) và đường thẳng d cắt nhau tại hai điểm phân biệt AB khi và chỉ khi phương trình (1) có hai nghiệm phân biệt x eq 1 điều kiện cần và đủ là m < 0 \vee m > 4.

    Khi đó hai giao điểm là A(x_{1}; - x_{1}
+ m); B(x_{2}; - x_{2} +
m).

    Ta có \left\{ \begin{matrix}
OA = \sqrt{m^{2} - 2m};OB = \sqrt{m^{2} - 2m} \\
AB = \sqrt{2(m^{2} - 4m)};d(O,d) = \frac{|m|}{\sqrt{2}} \\
\end{matrix} ight.;.

    S_{\Delta OAB} = \frac{1}{2}.AB.d(O,d)=
\frac{1}{2}.\frac{|m|}{\sqrt{2}}.\sqrt{2(m^{2} - 4m)} =
\frac{OA.OB.AB}{4R}.

    Suy ra \frac{1}{2}.\frac{|m|}{\sqrt{2}}\sqrt{2(m^{2} -
4m)} = \frac{(m^{2} - 2m).\sqrt{2(m^{2} -
4m)}}{4.2\sqrt{2}}

    \Leftrightarrow m^{2} - 2m = 4|m|
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0(l) \\
m = 6(n) \\
m = - 2(n) \\
\end{matrix} ight..

    Vậy tổng các phần từ của S bằng 4.

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Tính tổng tất cả các giá trị của mm biết đồ thị hàm số y = x^{3} + 2mx^{2} + (m + 3)x + 4y=x3+2mx2+(m+3)x+4 và đường thẳng y = x + 4y=x+4 cắt nhau tại ba điểm phân biệt A(0\ ;\ 4)A(0 ; 4), BB, CC sao cho diện tích tam giác IBCIBC bằng 8\sqrt{2}82 với I(1\ ;\ 3)I(1 ; 3).

    Hướng dẫn:

    +) Gọi đồ thị hàm số y = x^{3} + 2mx^{2}
+ (m + 3)x + 4\left( C_{m}
ight) và đồ thị hàm số y = x +
4(d).

    +) Phương trình hoành độ giao điểm của \left( C_{m} ight)(d)

    x^{3} + 2mx^{2} + (m + 3)x + 4 = x + 4

    \Leftrightarrow x^{3} + 2mx^{2} + (m + 2)x = 0\ (*)\Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x^{2} + 2mx + m + 2 = 0 \\
\end{matrix} ight.

    +) Gọi g(x) = x^{2} + 2mx + m +
2.

    +) (d) cắt \left( C_{m} ight) tại ba điểm phân biệt \Leftrightarrow phương trình (*) có ba nghiệm phân biệt

    \Leftrightarrow phương trình g(x) = 0 có hai nghiệm phân biệt khác 0

    \Leftrightarrow \left\{ \begin{matrix}
{\Delta'}_{g} > 0 \\
g(0) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - m - 2 > 0 \\
m + 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight.\ \  \\
m eq - 2 \\
\end{matrix} ight.\ \ \ \ (a)

    +)x = 0 là hoành độ điểm A, hoành độ điểm B, C là hai nghiệm x_{1}, x_{2} của phương trình g(x) = 0

    +) BC^{2} = \left( x_{2} - x_{1}
ight)^{2} + \left\lbrack \left( x_{2} + 4 ight) - \left( x_{1} + 4
ight) ightbrack^{2}

    = 2\left( x_{2} - x_{1}
ight)^{2} (do B, C thuộc đường thẳng (d)

    = 2\left\lbrack \left( x_{2} + x_{1}
ight)^{2} - 4x_{1}x_{2} ightbrack = 8\left( m^{2} - m - 2
ight)

    +) Viết phương trình đường thẳng (d) dưới dạng x - y + 4 = 0, ta có

    d\left( I,(d) ight) = \frac{|1 - 3 +
4|}{\sqrt{2}} = \sqrt{2}.

    +) S_{IBC} = 8\sqrt{2} \Leftrightarrow
\frac{1}{2}BC.d\left( I,(d) ight) = 8\sqrt{2}

    \Leftrightarrow
\frac{1}{4}BC^{2}.\left\lbrack d\left( I,(d) ight) ightbrack^{2} =
128

    \Leftrightarrow \frac{1}{4}8\left( m^{2}
- m - 2 ight).2 = 128

    \Leftrightarrow m^{2} - m - 34 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{1 + \sqrt{137}}{2} \\
m = \frac{1 - \sqrt{137}}{2} \\
\end{matrix} ight. (thỏa điều kiện (a))

    +) Vậy tổng tất cả các giá trị m1.

  • Câu 10: Vận dụng
    Xác định các giá trị nguyên tham số m

    Có bao nhiêu giá trị nguyên của mm để đồ thị hàm số y = x^{4} - 4x^{3} + (m - 2)x^{2} + 8x +
4y=x44x3+(m2)x2+8x+4 cắt trục hoành tại đúng hai điểm có hoành độ lớn hơn 11.

    Hướng dẫn:

    Phương trình hoành độ giao điểm x^{4} -
4x^{3} + (m - 2)x^{2} + 8x + 4 = 0(*)

    Đồ thị hàm số y = x^{4} - 4x^{3} + (m -
2)x^{2} + 8x + 4 cắt rục hoành tại đúng hai điểm có hoành độ lớn hơn 1 \Leftrightarrow (*) có đúng hai nghiệm lớn hơn 1.

    (*) \Leftrightarrow x^{4} - 4x^{3} + 8x+ 4 = (2 - m)x^{2}

    \Leftrightarrow 2 - m = x^{2} - 4x +
\frac{8}{x} + \frac{4}{x^{2}}

    Đây là phương trình hoành độ giao điểm của (C):y = x^{2} - 4x + \frac{8}{x} +
\frac{4}{x^{2}}\ \ (x > 1) với đường thẳng y = 2 - m song song với trục hoành.

    Xét hàm số y = x^{2} - 4x + \frac{8}{x} +
\frac{4}{x^{2}}\ \ (x > 1).

    y' = 2x - 4 - \frac{8}{x^{2}} -
\frac{8}{x^{3}} = \frac{2x^{4} - 4x^{3} - 8x - 8}{x^{2}}.

    Cho y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 - \sqrt{3}\ \ (L) \\
x = 1 + \sqrt{3}\ \ (t/m) \\
\end{matrix} ight..

    Bảng biến thiên

    Dựa vào bảng biến thiên ta thấy, ycbt\Leftrightarrow 0 < 2 - m < 9
\Leftrightarrow - 7 < m < 2.

    m nguyên nên m \in \left\{ - 6,\  - 5,...,\ 1
ight\}.

    Vậy có 8 giá trị nguyên của m thỏa bài toán.

  • Câu 11: Vận dụng cao
    Xác định các giá trị nguyên của tham số m

    Cho hai hàm số y = \frac{x}{x - 1} +
\frac{x + 1}{x} + \frac{x + 2}{x + 1}y=xx1+x+1x+x+2x+1y = e^{x} + 2023 + 3my=ex+2023+3m (mm là tham số thực) có đồ thị lần lượt là (C_{1})(C1)(C_{2})(C2). Có bao nhiêu số nguyên mm thuộc ( -
2022;2023)(2022;2023) để (C_{1})(C1)(C_{2})(C2) cắt nhau tại 3 điểm phân biệt?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm \frac{x}{x - 1} + \frac{x + 1}{x} + \frac{x + 2}{x
+ 1} = e^{x} + 2023 + 3m

    \Leftrightarrow \frac{x}{x - 1} + \frac{x
+ 1}{x} + \frac{x + 2}{x + 1} - e^{x} - 2023 = 3m (1).

    Đặt g(x) = \frac{x}{x - 1} + \frac{x +
1}{x} + \frac{x + 2}{x + 1} - e^{x} - 2023.

    Ta có g'(x) = - \frac{1}{(x - 1)^{2}}
- \frac{1}{x^{2}} - \frac{1}{(x + 1)^{2}} - e^{x} < 0 với mọi x thuộc các khoảng sau ( - \infty; - 1), ( - 1;0), (0;1)(1;
+ \infty) nên hàm số y =
g(x) nghịch biến trên mỗi khoảng đó.

    Mặt khác ta có \lim_{x ightarrow -
\infty}g(x) = - 2020\lim_{x
ightarrow + \infty}g(x) = - \infty.

    Bảng biến thiên hàm sốy =
g(x)

    Do đó để (C_{1})(C_{2}) cắt nhau tại đúng ba điểm phân biệt thì phương trình (1) phải có ba nghiệm phân biệt.

    Điều này xảy ra khi và chỉ khi đường thẳng y = 3m cắt đồ thị hàm số y = g(x) tại ba điểm phân biệt khi và chỉ khi 3m \geq - 2020
\Leftrightarrow m \geq - \frac{2020}{3} \approx - 673,3.

    Do m nguyên thuộc( - 2022;2023) nên m \in \left\{ - 673; - 672;...;2022
ight\}. Vậy có tất cả 2696 giá trịm thỏa mãn.

  • Câu 12: Vận dụng
    Tìm giá trị lớn nhất của tham số m

    Giá trị lớn nhất của mm để đường thẳng (d):y = x - m + 1(d):y=xm+1 cắt đồ thị hàm số y = x^{3} + 2(m - 2)x^{2} + (8 - 5m)x
+ m - 5y=x3+2(m2)x2+(85m)x+m5 tại 3 điểm phân biệt có hoành độ x_{1},\ x_{2},\ x_{3}x1, x2, x3 thỏa mãn điều kiện x_{1}^{2} + x_{2}^{2} + x_{3}^{2} =
20x12+x22+x32=20

    Hướng dẫn:

    Hoành độ giao điểm của đường thẳng (d) và đồ thị hàm số là nghiệm của phương trình

    x^{3} + 2(m - 2)x^{2} + (8 - 5m)x + m -
5 = x - m + 1

    \Leftrightarrow (x - 2)\left\lbrack
x^{2} + (2m - 2)x - m + 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{3} = 2 \\
x^{2} + (2m - 2)x - m + 3 = 0(1) \\
\end{matrix} ight..

    Đường thẳng (d) cắt đồ thị hàm số tại 3 điểm phân biệt \Leftrightarrow phương trình (1) có hai nghiệm phân biệt x_{1};x_{2} khác 2 \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m - 1)^{2} + (m - 3) > 0 \\
4 + (2m - 2).2 - m + 3 eq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight.\  \\
m eq - 1 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight. (2).

    Khi đó, \left\{ \begin{matrix}
x_{1} + x_{2} = - (2m - 2) \\
x_{1}x_{2} = - m + 3 \\
\end{matrix} ight..

    Theo giả thiết x_{1}^{2} + x_{2}^{2} +
x_{3}^{2} = 20 \Leftrightarrow \left( x_{1} + x_{2} ight)^{2} -
2x_{1}x_{2} + x_{3}^{2} = 20

    \Leftrightarrow (2m - 2)^{2} + 2(m - 3) +
4 = 20

    \Leftrightarrow 2m^{2} - 3m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 3 \\
m = - \frac{3}{2} \\
\end{matrix} ight.(thỏa mãn (2)).

    Vậy giá trị lớn nhất của m thỏa mãn yêu cầu bài toán là 3.

  • Câu 13: Vận dụng
    Xác định tham số m theo yêu cầu

    Tập tất cả các giá trị của tham số mm để phương trình x^{4} - 4x^{2} + 3 + m = 0x44x2+3+m=0 có 4 nghiệm phân biệt là

    Hướng dẫn:

    Ta có: x^{4} - 4x^{2} + 3 + m = 0
\Leftrightarrow - x^{4} + 4x^{2} - 3 = m.

    Xét hàm số y = - x^{4} + 4x^{2} -
3, khi đó:

    y' = - 4x^{3} + 8x;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = \pm \sqrt{2} \\
x = 0 \\
\end{matrix} ight..

    Suy ra y_{CD} = 1;\ y_{CT} = -
3.

    Vậy để phương trình đã cho có 4 nghiệm phân biệt thì: - 3 < m < 1 \Rightarrow m \in ( - 3\
;1).

  • Câu 14: Vận dụng
    Tính giá trị biểu thức

    Một đường thẳng cắt đồ thị hàm số y =
x^{4} - 2x^{2}y=x42x2 tại 4 điểm phân biệt có hoành độ là 0,1,m,n0,1,m,n. Tính S = m^{2} + n^{2}S=m2+n2.

    Hướng dẫn:

    Gọi phương trình đường thẳng là d:y = ax
+ b.

    Theo đề ta có 0,1,m,n là các nghiệm của phương trình: x^{4} - 2x^{2} - ax
- b = 0 (1).

    Vì x=0 ,x=1 là nghiệm của phương trình (1) nên ta có: \left\{ \begin{matrix}
b = 0 \\
a + b = - 1 \\
\end{matrix} ight.

    Khi đó phương trình (1) trở thành: x^{4}
- 2x^{2} + x = 0 \Leftrightarrow x(x - 1)(x^{2} + x - 1) =
0.

    Dễ thấy m,n là nghiệm của phương trình: x^{2} + x - 1 = 0.

    S = m^{2} + n^{2} = (m + n)^{2} - 2mn = (
- 1)^{2} + 2 = 3.

  • Câu 15: Vận dụng
    Tìm các số thực dương m theo yêu cầu bài toán

    Cho hàm số y = x^{4} - 3x^{2} -
2y=x43x22. Tìm số thực dương mm để đường thẳng y = my=m cắt đồ thị hàm số tại 22 điểm phân biệt AA, BB sao cho tam giác OABOAB vuông tại OO, trong đó OO là gốc tọa độ.

    Hướng dẫn:

    Hoành độ giao điểm của hai đồ thị hàm số là nghiệm của phương trình:

    x^{4} - 3x^{2} - 2 = m \Leftrightarrow
x^{4} - 3x^{2} - 2 - m = 0\ \ \ \ \ \ \ \ \ (1).

    m > 0 \Leftrightarrow - 2 - m <
0 hay phương trình (1) luôn có hai nghiệm phân biệt thỏa mãn:

    x^{2} = \frac{3 + \sqrt{4m + 17}}{2}
\Rightarrow x_{1} = \sqrt{\frac{3 + \sqrt{4m + 17}}{2}}x_{2} = - \sqrt{\frac{3 + \sqrt{4m +
17}}{2}}.

    Khi đó: A\left( x_{1};m ight), B\left( x_{2};m ight).

    Ta có tam giác OAB vuông tại O, trong đó O là gốc tọa độ \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = 0 \Leftrightarrow x_{1}.x_{2}
+ m^{2} = 0.

    \Leftrightarrow \frac{3 + \sqrt{4m +
17}}{2} = m^{2}

    \Leftrightarrow \left\{ \begin{matrix}
2m^{2} - 3 \geq 0 \\
4m^{4} - 12m^{2} - 4m - 8 = 0 \\
\end{matrix} ight.\ \overset{m > 0}{\leftrightarrow}m =
2.

    Vậy m = 2 là giá trị cần tìm.

  • Câu 16: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số mm để đường thẳng y = - mx + my=mx+m cắt đồ thị hàm số y = x^{3} + mx^{2} + my=x3+mx2+m tại 33 điểm phân biêt có hoành độ x_{1},\ x_{2},\ x_{3}x1, x2, x3 thỏa mãn - 1 < x_{1} + x_{2} + x_{3} <
31<x1+x2+x3<3?.

    Hướng dẫn:

    Ta có: (d)\ y = - mx + m, (C)\ y = x^{3} + mx^{2} + m.

    Phương trình hoành độ giao điểm của (d)(C): x^{3} +
mx^{2} + mx = 0\ \ \ (1).

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} + mx + m = 0\ \ \ (2) \\
\end{matrix} ight.

    Gọi x_{1},\ x_{2}2 nghiệm của phương trình (2), x_{3} =
0.

    (1)3 nghiệm phân biệt \Leftrightarrow (2)2 nghiệm x_{1},\ x_{2}phân biệt và khác 0.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0,\ \Delta = m^{2} - 4m \\
m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in ( - \infty;0) \cup (4; +
\infty).

    (1)3nghiệm phân biệt x_{1},\ x_{2},\ x_{3} thỏa - 1 < x_{1} + x_{2} + x_{3} < 3, với x_{1} + x_{2} = - m, x_{3} = 0.

    \Leftrightarrow - 1 < - m <
3

    \Leftrightarrow - 3 < m <
1, mà m \in ( - \infty;0) \cup (4;
+ \infty), m\mathbb{\in
Z}

    \Rightarrow m \in \left\{ - 2; - 1
ight\}. Vậy có 2 giá trị m.

  • Câu 17: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số y = \frac{3x + 2}{x +
2},(C)y=3x+2x+2,(C) và đường thẳng d:y = ax + 2b
- 4d:y=ax+2b4. Đường thẳng d cắt ( C ) tại A, B đối xứng nhau qua gốc tọa độ O, khi đó T = a + bT=a+b bằng

    Hướng dẫn:

    Xét phương trình hoành độ: \frac{3x +
2}{x + 2} = ax + 2b - 4\ ;\ x eq - 2.

    \Leftrightarrow ax^{2} + (2a + 2b - 7)x
- 10 = 0\ (*).

    Đường thẳng d cắt ( C) tại hai điểm phân biệt A, B khi phương trình (*) có hai nghiệm phân biệt\Leftrightarrow
\left\{ \begin{matrix}
a eq 0 \\
(2a + 2b - 7)^{2} - 4a(4b - 10) > 0 \\
4 eq 0\  \\
\end{matrix} ight.\ \ (2*)

    Gọi A\left( x_{1};ax_{1} + 2b - 4
ight);\ B\left( x_{2};ax_{2} + 2b - 4 ight).

    Do A, B đối xứng nhau qua gốc O nên \left\{ \begin{matrix}
x_{1} + x_{2} = 0 \\
4b - 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + x_{2} = 0 \\
b = 2 \\
\end{matrix} ight.

    Theo Viét của phương trình (*) ta có x_{1} + x_{2} = \frac{7 - 2a -
2b}{a}.

    \Rightarrow \frac{7 - 2a - 2b}{a} = 0
\Leftrightarrow 7 - 2a - 2b = 0 \Rightarrow a =
\frac{3}{2}.

    Thay \left\{ \begin{matrix}
a = \frac{3}{2} \\
b = 2 \\
\end{matrix} ight. vào điều kiện (2*) tháy thỏa mãn.

    Vậy a + b = \frac{7}{2}.

  • Câu 18: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Cho hàm số y = \frac{3x - 2m}{mx +
1}y=3x2mmx+1 với mm là tham số. Biết rằng với mọi m eq 0,meq0, đồ thị hàm số luôn cắt đường thẳng d:y = 3x -
3md:y=3x3m tại hai điểm phân biệt AA, B.B. Tích tất cả các giá trị của mm tìm được để đường thẳng dd cắt các trục Ox,OyOx,Oy lần lượt tại C,DC,D sao cho diện tích \Delta OABΔOAB bằng 2 lần diện tích \Delta OCDΔOCD bằng

    Hướng dẫn:

    Với m eq 0, xét phương trình \frac{3x - 2m}{mx + 1} = 3x -
3m

    \Leftrightarrow 3x^{2} - 3mx - 1 =
0. (*)

    Gọi tọa độ các giao điểm của d với đồ thị hàm số đã cho là: A\left(
x_{1};3x_{1} - 3m ight), B\left(
x_{2};3x_{2} - 3m ight).

    Tọa độ các điểm C, DC(m;0)D(0; - 3m).

    Gọi h = d_{(O,d)} thì h là chiều cao của các tam giác OABOC
D.

    Theo giả thiết: S_{\bigtriangleup OAB} =
2S_{\bigtriangleup OCD}

    \Leftrightarrow \frac{1}{2}AB.h =
2.\frac{1}{2}CD.h

    \Leftrightarrow AB = 2CD \Leftrightarrow
AB^{2} = 4CD^{2}

    \Leftrightarrow \left( x_{1} - x_{2}
ight)^{2} + \left\lbrack 3\left( x_{1} - x_{2} ight)
ightbrack^{2} = 4\left\lbrack m^{2} + ( - 3m)^{2}
ightbrack

    \Leftrightarrow 10\left( x_{1} - x_{2}
ight)^{2} = 40m^{2} \Leftrightarrow \left( x_{1} + x_{2} ight)^{2} -
4x_{1}x_{2} = 4m^{2}

    \Leftrightarrow m^{2} + \frac{4}{3} =
4m^{2} \Leftrightarrow m^{2} = \frac{4}{9} \Leftrightarrow m = \pm
\frac{2}{3}.

    Vậy tích các giá trị của m- \frac{4}{9}.

  • Câu 19: Vận dụng cao
    Tìm tất cả các giá trị tham số m

    Tìm tập hợp tất cả các giá trị của tham số mm để đồ thị hai hàm số y = \left( 2x^{2} + 1 ight)\sqrt{x - 1}Extra \left or missing \righty = \frac{11}{3x - 4} - \frac{1}{2 - x} +
11 + my=113x412x+11+m cắt nhau tại 22 điểm phân biệt?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    \left( 2x^{2} + 1 ight)\sqrt{x - 1} =
\frac{11}{3x - 4} - \frac{1}{2 - x} + 11 + m(*)

    Điều kiện: \left\{ \begin{matrix}
x - 1 \geq 0 \\
x eq \frac{4}{3} \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 1 \\
x eq \frac{4}{3} \\
x eq 2 \\
\end{matrix} ight.

    Ta có: (*) \Leftrightarrow \left( 2x^{2}
+ 1 ight)\sqrt{x - 1} - \frac{11}{3x - 4} + \frac{1}{2 - x} - 11 =
m

    Xét hàm số f(x) = \left( 2x^{2} + 1
ight)\sqrt{x - 1} - \frac{11}{3x - 4} + \frac{1}{2 - x} - 11 trên \lbrack 1;\  + \infty)\backslash\left\{
\frac{4}{3};\ 2 ight\}

    Nhận thấy, hàm số f(x) liên tục trên các khoảng \left\lbrack 1;\frac{4}{3}
ight),\ \left( \frac{4}{3};2 ight),\ (2\ ; + \infty)

    Ta có, f'(x) = \left( \left( 2x^{2} +
1 ight)\sqrt{x - 1} - \frac{11}{3x - 4} + \frac{1}{2 - x} - 11
ight)^{'}

    = 4x\sqrt{x - 1} + \left( 2x^{2} + 1
ight)\frac{1}{2\sqrt{x - 1}} + \frac{33}{(3x - 4)^{2}} + \frac{1}{(2 -
x)^{2}}

    = \frac{10x^{2} - 8x + 1}{2\sqrt{x - 1}}
+ \frac{33}{(3x - 4)^{2}} + \frac{1}{(2 - x)^{2}} > 0 với \forall x \in \lbrack 1;\  +
\infty)\backslash\left\{ \frac{4}{3};\ 2 ight\}

    Suy ra, hàm số f(x) đồng biến trên \lbrack 1;\  + \infty)\backslash\left\{
\frac{4}{3};\ 2 ight\}.

    Bảng biến thiên

    Từ bảng biến thiên ta suy ra đồ thị hai hàm số y = \left( 2x^{2} + 1 ight)\sqrt{x - 1}y = \frac{11}{3x - 4} - \frac{1}{2 - x} +
11 + m cắt nhau tại 2 điểm phân biệt khi m \in ( -
\infty;1).

  • Câu 20: Thông hiểu
    Xác định số tập con của tập S

    Gọi SS là tập hợp tất cả các giá trị nguyên của tham số mm để đồ thị hàm số y = x^{4} + x^{3} - 5x^{2} - x +
my=x4+x35x2x+m cắt trục hoành tại bốn điểm phân biệt có các hoành độ là x_{1},\ \ x_{2},\ \ x_{3},\ \ x_{4}x1,  x2,  x3,  x4 thỏa mãn \left( x_{1}^{2} + 1 ight)\left(
x_{2}^{2} + 1 ight)\left( x_{3}^{2} + 1 ight)\left( x_{4}^{2} + 1
ight) \geq 68Extra \left or missing \right.Tập SScó bao nhiêu tập con ?

    Hướng dẫn:

    Xét hàm h(x) = x^{4} + x^{3} - 5x^{2} - x
+ m,

    TXD:\mathbb{R},h'(x) = 4x^{3} +
3x^{2} - 10x - 1 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \approx - 1,9 \\
x \approx 1.3 \\
x \approx - 0.09 \\
\end{matrix} ight.

    Có BBT

    Dựa vào BBT YCBT \Leftrightarrow \left\{
\begin{matrix}
m + 0.05 > 0 \\
m - 4.69 < 0 \\
\end{matrix} ight.\  \Leftrightarrow - 0.05 < m <
4.69

    Khi đó

    y(x) = (x - x_{1})(x - x_{2})(x -
x_{3})(x - x_{4})

    \Rightarrow y( - x) = ( - x - x_{1})( -
x - x_{2})( - x - x_{3})( - x - x_{4})

    \Rightarrow y(x).y( - x) = (x^{2} -
x_{1}^{2})(x^{2} - x_{2}^{2})(x^{2} - x_{3}^{2})(x^{2} -
x_{4}^{2})

    \Rightarrow y(i).y( - i) = (x_{1}^{2} +
1)(x_{2}^{2} + 1)(x_{3}^{2} + 1)(x_{4}^{2} + 1)

    \Rightarrow (x_{1}^{2} + 1)(x_{2}^{2} +
1)(x_{3}^{2} + 1)(x_{4}^{2} + 1)

    = \left( i^{4} + i^{3} - 5i^{2} + m
ight)\left( i^{4} - i^{3} - 5i^{2} + m ight)

    = (6 + m - 2i)(6 + m + 2i) = (6 + m)^{2}
+ 4 \geq 68

    \Leftrightarrow - 14 \leq m \leq
2

    Kết hợp trên ta có S = \left\{ 0;1;2
ight\}. Vậy số tập con của S2^{3} =
8.

  • Câu 21: Vận dụng cao
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số mm để đồ thị hàm sốy = (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m +
5y=(m+1)x42(2m3)x2+6m+5 cắt trục hoành tại 4 điểm phân biệt có các hoành độ  thỏa mãn x_{\ ^{1}} < x_{\
^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}.x 1<x 2<x 3<1<x 4.

    Hướng dẫn:

    C1: Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là

    (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m + 5 =
0(1)

    Đặt t = x^{2} \geq 0 pt trở thành (m + 1)t^{2} - 2(2m - 3)t + 6m + 5 =
0(2)

    g(t) = (m + 1)t^{2} - 2(2m - 3)t + 6m +
5

    Để pt (1) có 4 nghiệm phân biệt thì pt (2) phải có 2 nghiệm dương phân biệt

    Hay \left\{ \begin{matrix}
m + 1 eq 0 \\
\Delta' > 0 \\
t_{1}.t_{2} > 0 \\
t_{1} + t_{2} > 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
(2m - 3)^{2} - (m + 1)(6m + 5) > 0 \\
\frac{6m + 5}{m + 1} > 0 \\
\frac{2m - 3}{m + 1} > 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
\frac{- 23 - \sqrt{561}}{4} < m < \frac{- 23 + \sqrt{561}}{4} \\
m < - 1 \vee m > - \frac{5}{6} \\
m < - 1 \vee m > \frac{3}{2} \\
\end{matrix} ight.\ (*)

    Để pt (1) có 4 nghiệm thỏa mãn x_{\ ^{1}}
< x_{\ ^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}

    thì pt (2) phải có 2 nghiệm thỏa 0 <
t_{\ ^{1}} < 1 < t_{\ ^{2}}

    \Leftrightarrow \left\{ \begin{matrix}
t_{1} - 1 < 0 \\
t_{2} - 1 > 0 \\
\end{matrix} ight.\Leftrightarrow \left( t_{1} - 1 ight)\left(
t_{2} - 1 ight) < 0 \Leftrightarrow t_{1}t_{2} - \left( t_{1} +
t_{2} ight) + 1 < 0

    \Leftrightarrow \frac{6m + 5}{m + 1} -
\frac{2(2m - 3)}{m + 1} + 1 < 0\Leftrightarrow \frac{3m + 12}{m + 1}
< 0 \Leftrightarrow - 4 < m < - 1

    Kết hợp với (*) ta có m \in ( - 4; -
1) thỏa yêu cầu bài toán.

    C2:

    Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là

    (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m + 5 =
0(1)

    Đặt t = x^{2} \geq 0pt trở thành (m + 1)t^{2} - 2(2m - 3)t + 6m + 5 =
0(2)

    Để pt (1) có 4 nghiệm thỏa mãn x_{\ ^{1}}
< x_{\ ^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}

    thì pt (2) phải có 2 nghiệm thỏa 0 <
t_{\ ^{1}} < 1 < t_{\ ^{2}}

    Phương trình (2) \Leftrightarrow m =
\frac{- t^{2} - 6t - 5}{t^{2} - 4t + 6} (biểu thức t^{2} - 4t + 6 eq 0,\forall t )

    Xét hàm số f(t) = \frac{- t^{2} - 6t -
5}{t^{2} - 4t + 6}, với t \in (0; +
\infty)

    Ta có f(t) liên tục trên (0; + \infty) và có

    f'(t) = \frac{10t^{2} - 2t -
56}{\left( t^{2} - 4t + 6 ight)^{2}}

    f'(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = \frac{1 - \sqrt{561}}{10} < 0 \\
t = \frac{1 + \sqrt{561}}{10} > 1 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta thấy đường thẳng y = m cắt đồ thị hàm số f(t) = \frac{- t^{2} - 6t - 5}{t^{2} - 4t +
6} tại hai giao điểm có hoàng độ thỏa 0 < t_{\ ^{1}} < 1 < t_{\ ^{2}} khi - 4 < m < - 1.

  • Câu 22: Vận dụng cao
    Tìm tham số m thỏa mãn điều kiện

    Cho hai hàm số y = \frac{x - 3}{x - 2} +
\frac{x - 2}{x - 1} + \frac{x - 1}{x} + \frac{x}{x + 1}y=x3x2+x2x1+x1x+xx+1y = |x + 2| - x + my=|x+2|x+m

    (mm là tham số thực) có đồ thị lần lượt là \left( C_{1} ight)Extra \left or missing \right\left( C_{2} ight)Extra \left or missing \right. Tập hợp tất cả các giá trị của mm để \left( C_{1} ight)Extra \left or missing \right\left( C_{2} ight)Extra \left or missing \right cắt nhau tại đúng bốn điểm phân biệt là

    Hướng dẫn:

    Xét phương trình \frac{x - 3}{x - 2} +
\frac{x - 2}{x - 1} + \frac{x - 1}{x} + \frac{x}{x + 1} = |x + 2| - x +
m

    \Leftrightarrow \frac{x - 3}{x - 2} +
\frac{x - 2}{x - 1} + \frac{x - 1}{x} + \frac{x}{x + 1} - |x + 2| + x =
m(1)

    Hàm số p(x) = \frac{x - 3}{x - 2} +
\frac{x - 2}{x - 1} + \frac{x - 1}{x} + \frac{x}{x + 1} - |x + 2| +
x.

    = \left\{ \begin{matrix}
\frac{x - 3}{x - 2} + \frac{x - 2}{x - 1} + \frac{x - 1}{x} + \frac{x}{x
+ 1} - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x \geq - 2 \\
\frac{x - 3}{x - 2} + \frac{x - 2}{x - 1} + \frac{x - 1}{x} + \frac{x}{x
+ 1}\  + 2x + 2\ \ \ \ khi\ x < - 2 \\
\end{matrix} ight.

    Ta có

    p'(x) = \left\{ \begin{matrix}\frac{1}{(x - 2)^{2}} + \frac{1}{(x - 1)^{2}} + \frac{1}{x^{2}} +\frac{1}{(x + 1)^{2}} > 0,\forall x \in ( - 2; +\infty)\backslash\left\{ - 1;0;1;2 ight\} \\\frac{1}{(x - 2)^{2}} + \frac{1}{(x - 1)^{2}} + \frac{1}{x^{2}} +\frac{1}{(x + 1)^2} + 2 > 0,\forall x < - 2 \\\end{matrix} ight.

    nên hàm số y = p(x) đồng biến trên mỗi khoảng ( - \infty; - 1), ( - 1;0), (0;1), (1;2), (2; +
\infty).

    Mặt khác ta có \lim_{x ightarrow +
\infty}p(x) = 2\lim_{x
ightarrow - \infty}p(x) = - \infty.

    Bảng biến thiên hàm số y =
g(x):

    Do đó để \left( C_{1} ight)\left( C_{2} ight) cắt nhau tại đúng bốn điểm phân biệt thì phương trình (1) phải có 4 nghiệm phân biệt. Điều này xảy ra khi và chỉ khi đường thẳng y
= m cắt đồ thị hàm số y =
p(x) tại 4 điểm phân biệt \Leftrightarrow m \geq 2.

  • Câu 23: Vận dụng
    Tính giá trị của biểu thức

    Cho đồ thị hàm số f(x) = x^{3} + bx^{2} +
cx + df(x)=x3+bx2+cx+d cắt trục hoành tại 3 điểm phân biệt có hoành độ x_{1}\ ,\ x_{2}\ ,\ x_{3}x1 , x2 , x3. Tính giá trị của biểu thức P = \frac{1}{fExtra \left or missing \right

    Hướng dẫn:

    x_{1}\ ,\ x_{2}\ ,\ x_{3} là ba nghiệm của phương trình bậc ba f(x) =
0

    \Rightarrow f(x) = \left( x - x_{1}
ight)\left( x - x_{2} ight)\left( x - x_{3} ight)

    Ta có f'(x) = \left( x - x_{1}
ight)\left( x - x_{2} ight) + \left( x - x_{2} ight)\left( x -
x_{3} ight) + \left( x - x_{1} ight)\left( x - x_{3}
ight).

    Khi đó: \left\{ \begin{matrix}
f'\left( x_{1} ight) = \left( x_{1} - x_{2} ight)\left( x_{1} -
x_{3} ight) \\
f'\left( x_{2} ight) = \left( x_{2} - x_{3} ight)\left( x_{2} -
x_{1} ight) \\
f'\left( x_{3} ight) = \left( x_{3} - x_{1} ight)\left( x_{3} -
x_{2} ight) \\
\end{matrix} ight.

    Suy ra P = \frac{1}{\left( x_{1} - x_{2}
ight)\left( x_{1} - x_{3} ight)} + \frac{1}{\left( x_{2} - x_{3}
ight)\left( x_{2} - x_{1} ight)} + \frac{1}{\left( x_{3} - x_{1}
ight)\left( x_{3} - x_{2} ight)}.

    = \frac{\left( x_{2} - x_{3} ight) -
\left( x_{1} - x_{3} ight) + \left( x_{1} - x_{2} ight)}{\left(
x_{1} - x_{2} ight)\left( x_{1} - x_{3} ight)\left( x_{2} - x_{3}
ight)} = 0.

  • Câu 24: Vận dụng cao
    Tính giá trị f(0)

    Cho hàm số bậc ba y = f(x)y=f(x) có đồ thị đi qua điểm A(1;1),B(2;4),C(3;9)A(1;1),B(2;4),C(3;9). Các đường thẳng AB,AC,BCAB,AC,BC lại cắt đồ thị lần lượt tại các điểm M,N,PM,N,P (MM khác AABB, NN khác AACC, PP khác BBCC. Biết rằng tổng các hoành độ của M,N,PM,N,P bằng 5, giá trị của f(0)f(0)

    Hướng dẫn:

    Từ giả thuyết bài toán ta giả sử

    f(x) = a(x - 1)(x - 2)(x - 3) +
x^{2} (a eq 0)

    Ta có: AB:y = 3x - 2, AC:y = 4x - 3, BC:y = 5x - 6.

    Khi đó:

    Hoành độ của M là nghiệm của phương trình:

    a\left( x_{M} - 1 ight)\left( x_{M} - 2
ight)\left( x_{M} - 3 ight) + {x_{M}}^{2} = 3x_{M} - 2

    \Leftrightarrow a\left( x_{M} - 1
ight)\left( x_{M} - 2 ight)\left( x_{M} - 3 ight) + \left( x_{M} -
1 ight)\left( x_{M} - 2 ight) = 0

    \Leftrightarrow a\left( x_{M} - 3 ight)
+ 1 = 0 \Leftrightarrow x_{M} = 3 - \frac{1}{a}.

    Hoành độ của N là nghiệm của phương trình:

    a\left( x_{N} - 1 ight)\left( x_{N} -
2 ight)\left( x_{N} - 3 ight) + {x_{N}}^{2} = 4x_{N} -
3

    \Leftrightarrow a\left( x_{N} - 1
ight)\left( x_{N} - 2 ight)\left( x_{N} - 3 ight) + \left( x_{N} -
1 ight)\left( x_{N} - 3 ight) = 0

    \Leftrightarrow a\left( x_{N} - 2 ight)
+ 1 = 0 \Leftrightarrow x_{N} = 2 - \frac{1}{a}.

    Hoành độ của P là nghiệm của phương trình:

    a\left( x_{P} - 1 ight)\left( x_{P} - 2
ight)\left( x_{P} - 3 ight) + {x_{P}}^{2} = 5x_{P} - 6

    \Leftrightarrow a\left( x_{P} - 1
ight)\left( x_{P} - 2 ight)\left( x_{P} - 3 ight) + \left( x_{P} -
2 ight)\left( x_{P} - 3 ight) = 0

    \Leftrightarrow a\left( x_{P} - 1 ight)
+ 1 = 0 \Leftrightarrow x_{P} = 1 - \frac{1}{a}.

    Từ giả thuyết ta có; x_{M} + x_{N} +
x_{P} = 5 \Leftrightarrow 6 - \frac{3}{a} = 5 \Leftrightarrow a =
3.

    Do đó: f(x) = 3(x - 1)(x - 2)(x - 3) +
x^{2}

    f(0) = - 18.

  • Câu 25: Thông hiểu
    Xác định khoảng chứa giá trị k theo yêu cầu

    Giá trị kk thỏa mãn đường thẳng d:y = kx + kd:y=kx+k cắt đồ thị (H):y = \frac{x - 4}{2x - 2}(H):y=x42x2 tại hai điểm phân biệt A\ ,\ BA , B cùng cách đều đường thẳng y = 0y=0. Khi đó kk thuộc khoảng nào trong các khoảng sau đây?

    Hướng dẫn:

    Xét phương trình hoành độ các giao điểm: kx + k = \frac{x - 4}{2x - 2} (điều kiện: x eq 1).

    \Rightarrow 2kx^{2} - x - 2k + 4 = 0\ \ \
(1).

    Đường thẳng d cắt đồ thị (H) tại hai điểm phân biệt A\ ,\ B khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác 1 \Leftrightarrow \left\{ \begin{matrix}
k eq 0 \\
2k - 1 - 2k + 4 eq 0 \\
1 - 4.2k.(4 - 2k) > 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
k eq 0 \\
16k^{2} - 32k + 1 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
k eq 0 \\
\left\lbrack \begin{matrix}
k > \frac{4 + \sqrt{15}}{4} \\
k < \frac{4 - \sqrt{5}}{4} \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Gọi x_{1}\ ,\ x_{2} là 2 nghiệm của phương trình (1), ta có: A\left( x_{1}\ ;\ kx_{1} + k ight)\ ,\ B\left(
x_{2}\ ;\ kx_{2} + k ight).

    Do A\ ,\ B cách đều đường thẳng y = 0 nên \left| kx_{1} + k ight| = \left| kx_{2} + k
ight| \Leftrightarrow kx_{1} + k = - kx_{2} - k(vì A\ ,\ B là hai điểm phân biệt)

    \Leftrightarrow x_{1} + x_{2} = - 2
\Rightarrow \frac{1}{2k} = - 2( áp dụng Viet) \Leftrightarrow k = - \frac{1}{4}( thỏa mãn điều kiện).

  • Câu 26: Vận dụng
    Chọn đáp án đúng

    Có bao nhiêu giá trị của mm để đồ thị của hàm số y = \frac{x}{1 - x}y=x1x cắt đường thẳng y = x - my=xm tại hai điểm phân biệt A,BA,B sao cho góc giữa hai đường thẳng OAOAOBOB bằng 60^{0}600( với OO là gốc tọa độ)?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    \frac{x}{1 - x} = x - m \Leftrightarrow
\left\{ \begin{matrix}
x eq 1 \\
x^{2} - mx + m = 0\ \ \ \ \ \ (*) \\
\end{matrix} ight.

    Để có hia điểm phân biệt A,B thì phương trình (*) phải có hai nghiệm phân biệt khác 1

    \left\{ \begin{matrix}
1 - m + m eq 0 \\
m^{2} - 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > 4 \\
m < 0 \\
\end{matrix} ight.

    Khi đó phương trình (*) có hai nghiệm phân biết x_{1},x_{2} thỏa mãn:

    \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}x_{2} = m \\
\end{matrix} ight.

    Giả sử A\left( x_{1};x_{1} - m
ight),B\left( x_{2};x_{2} - m ight), suy ra: \overrightarrow{OA}\left( x_{1};x_{1} - m
ight),\overrightarrow{OB}\left( x_{2};x_{2} - m ight)

    Theo giả thiết góc giữa hai đường thẳng OAOB bằng 60^{0} suy ra:

    \cos\left(
\overrightarrow{OA};\overrightarrow{OB} ight) = cos60^{0}

    \Leftrightarrow \frac{\left| x_{1}x_{2}
+ \left( x_{1} - m ight)\left( x_{2} - m ight)
ight|}{\sqrt{x_{1}^{2} + \left( x_{1} - m ight)^{2}}\sqrt{x_{2}^{2}
+ \left( x_{2} - m ight)^{2}}} = \frac{1}{2}

    \Leftrightarrow \frac{\left| 2x_{1}x_{2}- m\left( x_{1} + x_{2} ight) + m^{2}ight|}{\sqrt{x_{1}^{2}x_{2}^{2} + \left( x_{1}x_{2} - mx_{2}ight)^2 + x_{1}^{2}\left( x_{1}x_{2} - m ight)^{2} + \left\lbrack\left( x_{1} - m ight)\left( x_{2} - m ight) ightbrack^{2}}} =\frac{1}{2}

    \Leftrightarrow \frac{\left| 2m - m^{2}
+ m^{2} ight|}{\sqrt{m^{2} + \left( m - mx_{2} ight)^{2} + \left( m
- mx_{1} ight)^{2} + \left\lbrack x_{1}x_{2} - m\left( x_{1} + x_{2}
ight) + m^{2} ightbrack^{2}}} = \frac{1}{2}

    \Leftrightarrow \frac{|2m|}{\sqrt{m^{2}
+ \left( m - mx_{2} ight)^{2} + \left( m - mx_{1} ight)^{2} +
\left\lbrack m - m^{2} + m^{2} ightbrack^{2}}} =
\frac{1}{2}

    \Leftrightarrow \frac{2}{\sqrt{2 +
\left( 1 - x_{2} ight)^{2} + \left( 1 - x_{1} ight)^{2}}} =
\frac{1}{2}

    \Leftrightarrow 2 + \left( 1 - x_{2}
ight)^{2} + \left( 1 - x_{1} ight)^{2} = 16

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{2} - 2x_{1}x_{2} - 2\left( x_{1} + x_{2} ight) =
12

    \Leftrightarrow m^{2} - 4m - 12 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 6 \\
m = - 2 \\
\end{matrix} ight.

  • Câu 27: Vận dụng
    Tính độ dài ngắn nhất của AB

    Gọi AABB là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số y = \frac{x}{x -
2}y=xx2. Khi đó độ dài đoạn ABAB ngắn nhất bằng

    Hướng dẫn:

    Hàm số y = \frac{x}{x - 2} có đồ thị (C) như hình vẽ.

    Gọi A\left( a;\frac{a}{a - 2}
ight)B\left( b;\frac{b}{b -
2} ight) là hai điểm thuộc hai nhánh của (C) (a < 2
< b).

    Ta có: \overrightarrow{AB} = \left( b -
a;\frac{b}{b - 2} - \frac{a}{a - 2} ight) = \left( b - a;\frac{b -
a}{(b - 2)(2 - a)} ight).

    Áp dụng BĐT Côsi ta có: (b - 2)(2 - a)\leq \frac{(b - a)^{2}}{4}.

    Suy ra: AB^{2} = (b - a)^{2} + \frac{(b -
a)^{2}}{\left\lbrack (b - 2)(2 - a) ightbrack^{2}} \geq (b - a)^{2} + \frac{64}{(b - a)^{2}} \geq
16

    \Rightarrow AB \geq 4. Dấu bằng xảy ra khi và chỉ khi a = 2 -
\sqrt{2}b = 2 +
\sqrt{2}.

    Vậy AB_{\min} = 4.

  • Câu 28: Thông hiểu
    Chọn phương án đúng

    Tập tất cả các giá trị của tham số mm để phương trình x^{4} - 2mx^{2} + (2m - 1) = 0x42mx2+(2m1)=0 có 4 nghiệm thực phân biệt là

    Hướng dẫn:

    Xét phương trình: x^{4} - 2mx^{2} + (2m -
1) = 0.

    Đặt x^{2} = t(t \geq 0).

    Phương trình đã cho trở thành t^{2} - 2mt
+ (2m - 1) = 0(*).

    Để phương trình ban đầu có bốn nghiệm thực phân biệt thì phương trình (*) có hai nghiệm phân biệt dương

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m + 1 > 0 \\
2m > 0 \\
2m - 1 > 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\forall m eq 1 \\
m > 0 \\
m > \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > \frac{1}{2} \\
m eq 1 \\
\end{matrix} ight.

    hay m \in \left( \frac{1}{2}; + \infty
ight)\backslash\left\{ 1 ight\}.

  • Câu 29: Vận dụng
    Tính giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = \frac{x + 3}{x +
1}y=x+3x+1 có đồ thị (C)(C) và đường thẳng d:y = x - md:y=xm, với mm là tham số thực. Biết rằng đường thẳng dd cắt (C)(C) tại hai điểm phân biệt AABB sao cho điểm G(2; - 2)G(2;2) là trọng tâm của tam giác OABOAB (OO là gốc toạ độ). Giá trị của mm bằng

    Hướng dẫn:

    Hàm số y = \frac{x + 3}{x + 1}y' = \frac{- 2}{(x + 1)^{2}} <
0, \forall x \in D và đường thẳng d:y = x - m có hệ số a = 1 > 0 nên d luôn cắt (C) tại hai điểm phân biệt A\left( x_{A};\ y_{A} ight)B\left( x_{B};\ y_{B} ight) với mọi giá trị của tham số m.

    Phương trình hoành độ giao điểm của d(C) là: \frac{x + 3}{x + 1} = x - m

    \Leftrightarrow x^{2} - mx - m - 3 = 0\ \
\ \ (x eq - 1).

    Suy ra x_{A}, x_{B} là 2 nghiệm của phương trình x^{2} - mx - m - 3 = 0.

    Theo định lí Viet, ta có x_{A} + x_{B} =
m.

    Mặt khác, G(2; - 2) là trọng tâm của tam giác OAB nên x_{A} + x_{B} + x_{O} = 3x_{G}

    \Leftrightarrow x_{A} + x_{B} =
6 \Leftrightarrow m =
6.

    Vậy m = 6 thoả mãn yêu cầu đề bài.

  • Câu 30: Vận dụng cao
    Tìm m để phương trình có 6 nghiệm phân biệt

    Tìm tất cả các giá trị thực của mm để phương trình \left| x^{4} - 2x^{2} - 3 ight| = 2m -
1Extra \left or missing \right có đúng 66 nghiệm thực phân biệt.

    Hướng dẫn:

    Xét g(x) = x^{4} - 2x^{2} - 3 có tập xác định:D\mathbb{= R}

    g'(x) = 4x^{3} - 4x

    g'(x) = 0 \Leftrightarrow 4x^{3} - 4x
= 0. \Leftrightarrow 4x\left( x^{2}
- 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Đồ thị hàm số f(x) = \left| x^{4} -
2x^{2} - 3 ight| là:

    Để phương trình \left| x^{4} - 2x^{2} - 3
ight| = 2m - 1 có đúng 6 nghiệm thực phân biệt.

    \Leftrightarrow 3 < 2m - 1 <
4 \Leftrightarrow 4 < 2m < 5
\Leftrightarrow 2 < m < \frac{5}{2}

  • Câu 31: Vận dụng
    Chọn phát biểu đúng

    Cho hàm số y = x^{3} + 3mx^{2} -
m^{3}y=x3+3mx2m3 có đồ thị \left( C_{m}
ight)Extra \left or missing \right và đường thẳng d:y = m^{2}x
+ 2m^{3}d:y=m2x+2m3. Biết rằng m_{1},\ m_{2}\
\left( m_{1} > m_{2} ight)Extra \left or missing \right là hai giá trị thực của mm để đường thẳng dd cắt đồ thị \left( C_{m} ight)Extra \left or missing \right tại 33 điểm phân biệt có hoành độ x_{1},\ \ x_{2},\ \ x_{3}x1,  x2,  x3 thỏa mãn {x_{1}}^{4} + {x_{2}}^{4} + \ {x_{3}}^{4} =
83x14+x24+ x34=83. Phát biểu nào sau đây là đúng về quan hệ giữa hai giá trị m_{1},\ \
m_{2}m1,  m2?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm của d\left(
C_{m} ight)

    x^{3} + 3mx^{2} - m^{3} = m^{2}x +
2m^{3}

    \Leftrightarrow x^{3} + 3mx^{2} - m^{2}x
- 3m^{3} = 0

    \Leftrightarrow \left( x^{3} - m^{2}x
ight) + \left( 3mx^{2} - 3m^{3} ight) = 0

    \begin{matrix}
\Leftrightarrow x\left( x^{2} - m^{2} ight) + 3m\left( x^{2} - m^{2}
ight) = 0 \\
\Leftrightarrow (x + 3m)\left( x^{2} - m^{2} ight) = 0 \\
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 3m \\
x = m \\
x = - m \\
\end{matrix} ight.\  \\
\end{matrix}

    Để đường thẳng d cắt đồ thị \left( C_{m} ight) tại 3 điểm phân biệt có hoành độ x_{1},\ x_{2},\ x_{3} \Leftrightarrow m eq 0.

    Khi đó, {x_{1}}^{4} + {x_{2}}^{4} + \
{x_{3}}^{4} = 83 \Leftrightarrow m^{4} + ( - m)^{4} + ( - 3m)^{4} =
83

    \Leftrightarrow 83m^{4} = 83
\Leftrightarrow m = \pm 1

    Vậy m_{1} = 1,\ m_{2} = - 1 hay m_{1} + m_{2} = 0.

  • Câu 32: Vận dụng
    Xác định các giá trị thực tham số m

    Cho hàm số y = x^{3} - 3mx^{2} +
2my=x33mx2+2m. Có bao nhiêu giá trị của tham số thực mm để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ lập thành cấp số cộng?

    Hướng dẫn:

    Phương trình hoành độ giao điểm: x^{3} -
3mx^{2} + 2m = 0 (*)

    Phương trình ax^{3} + bx^{2} + cx + d =
0 có ba nghiệm lập thành cấp số cộng

    \overset{}{ightarrow} Phương trình có một nghiệm x_{0} = -
\frac{b}{3a}.

    Suy ra phương trình (*) có một nghiệm x = m.

    Thay x = m vào phương trình (*), ta được m^{3} - 3m\ .\ m^{2} + 2m = 0 \Leftrightarrow -
2m^{3} + 2m = 0 \leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 0 \\
\end{matrix} ight..

    Thử lại:

    Với m = 1, ta được x^{3} - 3x^{2} + 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = 1 - \sqrt{3} \\
x = 1 \\
x = 1 + \sqrt{3} \\
\end{matrix} ight..

    Do đó m = 1 thỏa mãn.

    Với m = - 1, ta được x^{3} + 3x^{2} - 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 + \sqrt{3} \\
x = - 1 \\
x = - 1 - \sqrt{3} \\
\end{matrix} ight..

    Do đó m = - 1 thỏa mãn.

    Với m = 0, ta được x^{3} = 0 \Leftrightarrow x = 0.

    Do đó m = 0 không thỏa mãn.

    Vậy m = \pm 1 là hai giá trị cần tìm.

  • Câu 33: Vận dụng cao
    Tìm m để biểu thức đạt giá trị nhỏ nhất

    Cho hàm số y = \frac{x}{1 - x}\ \ \ \ \
(C)y=x1x     (C) và điểm A( - 1;1).A(1;1). Tìm mm để đường thẳng d:\ \ y = mx - m - 1d:  y=mxm1 cắt (C)(C)tại hai điểm phân biệt M,NM,N sao cho AM^{2} + AN^{2}AM2+AN2 đạt giá trị nhỏ nhất.

    Hướng dẫn:

    Phương trình hoành độ giao điểm của (C)d là: \frac{x}{1 - x} = mx - m - 1 (đk: x eq 1)

    \begin{matrix}
\Rightarrow x = (1 - x)(mx - m - 1) \\
\Leftrightarrow x = mx - m - 1 - mx^{2} + mx + x \\
\Leftrightarrow mx^{2} - 2mx + m + 1 = 0\ \ (*) \\
\end{matrix}

    Để (C)d cắt nhau tại hai điểm phân biệt M,N thì (*) phải có 2 nghiệm phân biệt khác 1 \Leftrightarrow \left\{
\begin{matrix}
m eq 0 \\
\Delta' = m^{2} - m(m + 1) = - m > 0 \\
m - 2m + m + 1 eq 0 \\
\end{matrix} ight.

    \Leftrightarrow m < 0

    Giả sửM\left( x_{1};y_{1} ight),N\left(
x_{2};y_{2} ight).

    Theo hệ thức viét : x_{1} + x_{2} = 2;\ \
x_{1}x_{2} = \frac{m + 1}{m}

    \Rightarrow y_{1} + y_{2} = m\left(
x_{1} + x_{2} ight) - 2m - 2 = 2m - 2m - 2 = - 2

    y_{1}.y_{2} = \left( mx_{1} - m - 1
ight)\left( mx_{2} - m - 1 ight)

    = m^{2}x_{1}x_{2} - m(m + 1)\left( x_{1}
+ x_{2} ight) + (m + 1)^{2}

    = m(m + 1) - 2m(m + 1) + (m + 1)^{2} = m+ 1

    Ta có:

    AM^{2} + AN^{2} = \left( x_{1} + 1
ight)^{2} + \left( y_{1} - 1 ight)^{2} + \left( x_{2} + 1
ight)^{2} + \left( y_{2} - 1 ight)^{2}

    = \left( x_{1} + x_{2} + 2 ight)^{2} -
2\left( x_{1} + 1 ight)\left( x_{2} + 1 ight) + \left( y_{1} + y_{2}
- 2 ight)^{2} - 2\left( y_{1} - 1 ight)\left( y_{2} - 1
ight)

    = \left( x_{1} + x_{2} + 2 ight)^{2} -
2\left( x_{1}x_{2} + x_{1} + x_{2} + 1 ight)+ \left( y_{1} + y_{2} -
2 ight)^{2} - 2\left( y_{1}y_{2} - \left( y_{1} + y_{2} ight) + 1
ight)

    = (2 + 2)^{2} - 2\left( \frac{m + 1}{m}
+ 2 + 1 ight)+ ( - 2 - 2)^{2} - 2\left( m + 1 - ( - 2) + 1
ight)

    = 18 - 2\left( \frac{m + 1}{m} ight) -
2m = 18 - 2 - 2.\frac{1}{m} - 2m

    = 16 + 2.\left\lbrack \frac{1}{- m} + ( -
m) ightbrack \geq 16 + 2.2 = 20 (Áp dụng BĐT Côsi)

    Suy ra: AM^{2} + AN^{2} đạt giá trị nhỏ nhất là 20 khi \frac{1}{- m} = - m \Leftrightarrow m^{2} = 1
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 1 \\
\end{matrix} ight.

    Vậy m = - 1 (vì m < 0).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (24%):
    2/3
  • Thông hiểu (48%):
    2/3
  • Vận dụng (27%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Bạn còn 2 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 2 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo

Nhiều người đang xem

🖼️

Chuyên đề Toán 12

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng