Cho hàm số
Vì đường thẳng cắt đồ thị hàm số
tại 3 điểm phân biệt nên đường thẳng
là đường thẳng có hệ số góc dạng
.
Phương trình hoành độ giao điểm của và
là:
.
Mà phương trình là phương trình bậc 4 nên phương trình muốn có 3 nghiệm phân biệt thì trong đó sẽ có 1 nghiệm kép gọi là , hai nghiệm còn lại là
.
Suy ra đường thẳng là tiếp tuyến của đồ thị
, không mất tính tổng quát giả sử đường thẳng
tiếp xúc với đồ thị hàm số
tại
.
Gọi là tiếp tuyến của
tại điểm có hoành độ
,
cắt
tại 2 điểm phân biệt có hoành độ
thỏa mãn
.
Ta có: .
Phương trình hoành độ giao điểm của và
là:
Yêu cầu bài toán có 3 nghiệm phân biệt thỏa mãn
.
Để phương trình có 3 nghiệm phân biệt thỏa mãn
thì phương trình
phải có 2 nghiệm phân biệt
khác
và thỏa mãn định lí Vi – ét:
Ta có:
.
Vậy có đúng 1 đường thẳng thỏa mãn yêu cầu bài toán.