Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Bạn đã dùng hết 2 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12: Tìm giá trị lớn nhất nhỏ nhất của hàm số trên khoảng

VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Gọi mm là giá trị nhỏ nhất của hàm số y = x - 1 + \frac{4}{x - 1}y=x1+4x1 trên khoảng (1; + \infty)(1;+). Tìm mm?

    Hướng dẫn:

    Tập xác định D = R\backslash\left\{ 1
ight\}.

    y' = \frac{x^{2} - 2x - 3}{(x -
1)^{2}}\ \ ,\ y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng biến thiên:

    \Rightarrow m = \min_{(1; + \ \infty)}y =
4 khi x = 3

  • Câu 2: Thông hiểu
    Tìm m thỏa mãn yêu cầu đề bài

    Gọi mm là giá trị nhở nhất của hàm số y = x + \frac{4}{x}y=x+4x trên khoảng (0; + \infty)(0;+). Tìm mm

    Hướng dẫn:

    \begin{matrix}
y' = 1 - \frac{4}{x^{2}} \\
y' = 0 \Leftrightarrow x = \pm 2;\ \ \ \ \ x = 2 \in (0; + \infty).
\\
\\
\end{matrix}

    Bảng biến thiên:

    Suy ra giá trị nhỏ nhất của hàm số bằng y(2) = 4 \Rightarrow m = 4.

  • Câu 3: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) = \frac{\sqrt{x^{2} -
1}}{x - 2}f(x)=x21x2 với xx thuộc D = ( - \infty;\  - 1brack \cup
\left\lbrack 1;\ \frac{3}{2} ightbrackExtra \left or missing \right. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Hàm số xác định và liên tục trên D = ( -
\infty;\  - 1brack \cup \left\lbrack 1;\ \frac{3}{2}
ightbrack.

    f'(x) = \frac{- 2x + 1}{(x -
2)^{2}\sqrt{x^{2} - 1}}; f'(x)
= 0 \Leftrightarrow x = \frac{1}{2} otin D

    Vậy \max_{D}f(x) = 0; \min_{D}f(x) = -\sqrt{5}.

  • Câu 4: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Tính giá trị nhỏ nhất của hàm số y = 3x +
\frac{4}{x^{2}}y=3x+4x2 trên khoảng (0; +
\infty)(0;+).

    Hướng dẫn:

    Cách 1:

    y = 3x + \frac{4}{x^{2}} = \frac{3x}{2}
+ \frac{3x}{2} + \frac{4}{x^{2}} \geq
3\sqrt[3]{\frac{3x}{2}.\frac{3x}{2}.\frac{4}{x^{2}}} =
3\sqrt[3]{9}

    Dấu " = " xảy ra khi \frac{3x}{2} = \frac{4}{x^{2}}
\Leftrightarrow x = \sqrt[3]{\frac{8}{3}}.

    Vậy \min_{(0; + \infty)}y =
3\sqrt[3]{9}

    Cách 2:

    Xét hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty)

    Ta có y = 3x + \frac{4}{x^{2}}
\Rightarrow y' = 3 - \frac{8}{x^{3}}

    Cho y' = 0 \Leftrightarrow
\frac{8}{x^{3}} = 3 \Leftrightarrow x^{3} = \frac{8}{3} \Leftrightarrow
x = \sqrt[3]{\frac{8}{3}}

    \Rightarrow \min_{(0; + \infty)}y =
y\left( \sqrt[3]{\frac{8}{3}} ight) = 3\sqrt[3]{9}

  • Câu 5: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất MM của hàm số f(x) = x - \frac{1}{x}f(x)=x1x trên (0;3brack.(0;3brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 1 + \frac{1}{x^{2}}
> 0,\ \forall x \in (0;3).

    Suy ra hàm số f(x) đồng biến trên (0;3brack nên đạt giá trị lớn nhất tại x = 3\max_{(0;3brack}f(x) = f(3) =
\frac{8}{3}.

  • Câu 6: Thông hiểu
    Chọn mệnh đề đúng

    Gọi y_{CT}yCT là giá trị cực tiểu của hàm số f(x) = x^{2} +
\frac{2}{x}f(x)=x2+2x trên (0; +
\infty)(0;+). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có:

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2x^{3} - 2}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Qua điểm x = 1 thì hàm số đổi dấu từ '' - '' sang '' + '' trong khoảng (0; + \infty).

    Suy ra trên khoảng (0; + \infty) hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.

    Vậy y_{CT} = \min_{(0; +
\infty)}y.

  • Câu 7: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Tìm giá trị nhỏ nhất mm của hàm số f(x) = x^{2} + \frac{2}{x}f(x)=x2+2x trên khoảng (0; + \infty).(0;+).

    Hướng dẫn:

    Ta có :

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2\left( x^{3} - 1 ight)}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy \min_{(0; + \infty)}f(x) = f(1) = 3.

  • Câu 8: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng hàm số f(x) = - x + 2018 -
\frac{1}{x}f(x)=x+20181x đạt giá trị lớn nhất trên đoạn (0;4)(0;4) tại x_{0}x0. Tính P
= x_{0} + 2018.P=x0+2018.

    Hướng dẫn:

    Ta có:

    f'(x) = - 1 +
\frac{1}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in (0;4) \\
x = - 1 otin (0;4) \\
\end{matrix} ight.

    Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy hàm số đạt giá trị lớn nhất trên (0;4) tại x = x_{0} = 1

    \Rightarrow P = 2019

  • Câu 9: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Với giá trị nào của xx thì hàm số y = x^{2} + \frac{1}{x}y=x2+1x đạt giá trị nhỏ nhất trên khoảng (0; +
\infty)(0;+)?

    Hướng dẫn:

    TXD: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    y' = 2x - \frac{1}{x^{2}}, y' = 0 \Leftrightarrow x =
\frac{1}{\sqrt[3]{2}}.

    Dựa vào BBT thì x =
\frac{1}{\sqrt[3]{2}} hàm số đạt giá trị nhỏ nhất trên (0; + \infty).

  • Câu 10: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên nửa khoảng

    Giá trị nhỏ nhất của hàm số f(x) = x +
\frac{1}{x}f(x)=x+1x trên nửa khoảng \lbrack
2; + \infty)[2;+) là:

    Hướng dẫn:

    Áp dụng bất đẳng thức Cô-si, ta được:

    f(x) = x + \frac{1}{x} = \frac{3x}{4} +
\frac{x}{4} + \frac{1}{x} \geq \frac{3.2}{4} +
2\sqrt{\frac{x}{4}.\frac{1}{x}} = \frac{5}{2}.

    Dấu bằng xảy ra khi x = 2.

  • Câu 11: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Gọi mm là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x}y=x+4x trên khoảng (0; + \infty)(0;+). Tìm mm.

    Hướng dẫn:

    Cách 1:

    Hàm số y = x + \frac{4}{x} liên tục và xác định trên (0; +
\infty).

    Ta có

    y' = 1 - \frac{4}{x^{2}} =
\frac{x^{2} - 4}{x^{2}} \Rightarrow y' = 0\Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \in (0; + \infty) \\
x = - 2 otin (0; + \infty) \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy giá trị nhỏ nhất là m = 4 khi x = 2.

    Cách 2:

    Với x \in (0;\  + \infty) \Rightarrow x;\
\frac{4}{x} > 0.

    Áp dụng bất đẳng thức Cô si ta có: x + \frac{4}{x} \geq 2\sqrt{x.\frac{4}{x}} =
4.

    Dấu bằng xảy ra khi và chỉ khi \left\{
\begin{matrix}
x > 0 \\
x = \dfrac{4}{x} \\
\end{matrix} ight.\  \Leftrightarrow x = 2. Vậy m = 4 khi x =
2.

  • Câu 12: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên tập xác định

    Giá trị nhỏ nhất của hàm số y = \sqrt{4 -
x} + \sqrt{3}y=4x+3 trên tập xác định của nó là

    Hướng dẫn:

    Tập xác định của hàm số là: D = ( -
\infty;4brack.

    Ta có y' = \frac{- 1}{2\sqrt{4 - x}}
< 0,\ \forall x \in D

    Bảng biến thiên

    Từ bảng biến thiên suy ra \min_{( -
\infty;4brack}y = \sqrt{3} khi x
= 4.

  • Câu 13: Thông hiểu
    Chọn phương án đúng

    Giá trị nhỏ nhất của hàm số y = x +
\frac{2}{x} - \left( 1 + \sqrt{2} ight)^{2}Extra \left or missing \right trên khoảng (0; + \infty)(0;+)

    Hướng dẫn:

    Hàm số xác định và liên tục trên khoảng (0; + \infty).

    y' = 1 - \frac{2}{x^{2}} =
\frac{x^{2} - 2}{x^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = \sqrt{2} \\
x = - \sqrt{2} \\
\end{matrix} ight.\ .

    Bảng biến thiên:

    Vậy \min_{(0; + \infty)}y = f\left(
\sqrt{2} ight) = - 3.

  • Câu 14: Thông hiểu
    Chọn phương án thích hợp

    Giá trị nhỏ nhất của hàm số y = x - 5 +
\frac{1}{x}y=x5+1x trên khoảng (0; +
\infty)(0;+) bằng bao nhiêu?

    Hướng dẫn:

    Áp dụng bất đẳng thức Cô – si ta có:

    y = x + \frac{1}{x} - 5 \geq
2\sqrt{x.\frac{1}{x}} - 5 = - 3

    Dấu bằng xảy ra khi x = \frac{1}{x}
\Leftrightarrow x^{2} = 1 \Leftrightarrow x = 1 (vì x > 0).

    Vậy \min_{(0; + \infty)}y = -
3

  • Câu 15: Thông hiểu
    Chọn mệnh đề đúng

    Mệnh đề nào sau đây là đúng về hàm số y =
\frac{x + 1}{\sqrt{x^{2} + 5}}y=x+1x2+5trên tập xác định của nó.

    Hướng dẫn:

    Tập xác định: D\mathbb{= R}.

    y' = \dfrac{\sqrt{x^{2} + 5} - (x +
1)\dfrac{2x}{2\sqrt{x^{2} + 5}}}{x^{2} + 5}

    = \frac{x^{2} + 5 - x^{2} -
x}{\sqrt{x^{2} + 5}\left( x^{2} + 5 ight)} = \frac{5 - x}{\sqrt{x^{2}
+ 5}\left( x^{2} + 5 ight)}.

    y' = 0 \Leftrightarrow \frac{5 -
x}{\sqrt{x^{2} + 5}\left( x^{2} + 5 ight)} = 0

    \Leftrightarrow 5 - x = 0
\Leftrightarrow x = 5

    Bảng biến thiên:

    Từ bảng biến thiên có \max_{\mathbb{R}}y
= y(5) = \frac{\sqrt{30}}{5} khi x
= 5.

    Hàm số y = \frac{x + 1}{\sqrt{x^{2} +
5}} không có giá trị nhỏ nhất.

    Vậy hàm số có giá trị lớn nhất và không có giá trị nhỏ nhất.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (100%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Bạn còn 2 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 2 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo

    Nhiều người đang xem

    🖼️

    Toán 12

    Xem thêm
    Chia sẻ
    Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
    Mã QR Code
    Đóng