Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12 Tọa độ của Vectơ trong không gian mức độ VD, VDC

Trắc nghiệm Toán 12: Hệ trục tọa độ trong không gian Oxyz - Có đáp án

Chinh phục chuyên đề Tọa độ của Vectơ trong không gian lớp 12 với bộ bài tập mức độ vận dụng và vận dụng cao (VD, VDC) được chọn lọc sát với cấu trúc đề thi THPT Quốc gia. Tài liệu được biên soạn kỹ lưỡng, giúp học sinh luyện tập từng bước từ cơ bản đến nâng cao, làm chủ kiến thức về tọa độ, vectơ, hình học không gian và kỹ năng giải nhanh các bài toán trắc nghiệm.
Mỗi bài tập đều kèm theo đáp án và hướng dẫn chi tiết, giúp học sinh dễ dàng tự học, tự kiểm tra và đánh giá năng lực bản thân. Đây là tài liệu không thể thiếu cho học sinh lớp 12 đang trong quá trình ôn thi THPT Quốc gia môn Toán, cũng như các giáo viên cần nguồn tài liệu chất lượng để giảng dạy. Hãy luyện tập thường xuyên để đạt điểm cao trong kỳ thi!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 24 câu
  • Điểm số bài kiểm tra: 24 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho A(1;0;0),\ \ B(0;2;0);M(x - 1;2y - 2;7). Gọi M' là hình chiếu của M trên mặt phẳng (Oxy). Khi tứ giác OBM'A là hình bình hành thì giá trị x + y bằng?

    Hướng dẫn:

    M' là hình chiếu của M trên mặt phẳng (Oxy) \Rightarrow M'(x - 1;2y -
2;0).

    OBM'A là hình bình hành

    \Leftrightarrow \overrightarrow{OB} =
\overrightarrow{AM'} \Leftrightarrow \left\{ \begin{matrix}
0 = x - 2 \\
2 = 2y - 2 \\
0 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
\end{matrix} \right..

    Vậy x + y = 4.

  • Câu 2: Vận dụng cao
    Xác định giá trị của biểu thức

    Trong không gian Oxyz cho A(1;0;2), B(
- 1;2;2), C(3;1;1). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxz) sao cho biểu thức S = 2\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó T = 6a - 5b + 3c có giá trị là

    Hướng dẫn:

    Do M(a;b;c) thuộc mặt phẳng (Oxz) nên b = 0 \Rightarrow M(a;0;c).

    Ta có \overrightarrow{MA} = (1 - a;0;2 -
c), \overrightarrow{MB} = ( - 1 -
a;2;2 - c), \overrightarrow{MC} =
(3 - a;1;1 - c).

    S =
2\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA}

    = 2\left( a^{2} - 1 + 4 - 4c + c^{2}\right)+ \left( a^{2} - 2a - 3 + 2 + c^{2} - 3c + 2 \right)+ 3\left(a^{2} - 4a + 3 + c^{2} - 3c + 2 \right)= 6a^{2} + 6c^{2} - 14a - 20c +
22

    = 6\left( a - \frac{7}{6} \right)^{2} +
6\left( b - \frac{5}{3} \right)^{2} - \frac{17}{6} \geq -
\frac{17}{6}.

    Suy ra S đạt giá trị nhỏ nhất - \frac{17}{6} khi và chỉ khi \left\{ \begin{matrix}
a = \frac{7}{6} \\
c = \frac{5}{3} \\
\end{matrix} \right..

    Vậy T = 6a - 5b + 3c = 6.\frac{7}{6} -
5.0 + 3.\frac{5}{3} = 12.

  • Câu 3: Thông hiểu
    Tính độ lớn lực Trái Đất tác dụng lên vật

    Nếu một vật có khối lượng m(kg) thì lực hấp dẫn \overrightarrow{P}của trái đất tác dụng lên vật được xác định theo công thức \overrightarrow{p} = m\
\overrightarrow{g}, trong đó \overrightarrow{g} là gia tốc rơi tự do có độ lớn g = 9,8\left( m/s^{2}
\right). Độ lớn của lực Trái Đất tác dụng lên một quả lê có khối lượng 105g

    Hướng dẫn:

    Đổi 105g = 0,105kg

    Độ lớn của lực hấp dẫn của trái đất tác dụng lên quả lê là:

    \left| \overrightarrow{p} \right| = m\left|
\overrightarrow{g} \right| = 0,105.9,8 = 1,029N.

  • Câu 4: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian với một hệ trục toạ độ cho trước, ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm A(800;500;7) đến điểm B(940;550;8) trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 10 phút tiếp theo D(x;y;z). Khi đó x + y + z = ?

    A drawing of a point of a personDescription automatically generated with medium confidence

    Hướng dẫn:

    Gọi D(x;y;z) là vị trí của máy bay sau 10 phút bay tiếp theo. Vì hướng của máy bay không đổi nên \overrightarrow{AB}\overrightarrow{BD} cùng hướng. Do vận tốc máy bay không đổi và thời gian bay từ A đến B bằng thời gian bay từ B đến D nên AB =
BD.

    Do đó, \overrightarrow{BD} =
\overrightarrow{AB} = (140;50;1).

    Mặt khác: \overrightarrow{BD} = (x -
940;y - 550;z - 8) nên \left\{
\begin{matrix}
x - 940 = 140 \\
y - 550 = 50 \\
z - 8 = 1 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 1080 \\
y = 600 \\
z = 9 \\
\end{matrix} \right.\  \right.

    Vậy D(1080;600;9).

    Vậy tọa độ của máy bay trong 10 phút tiếp theo là (1080;600;9).

    Suy ra x + y + z = 1689

  • Câu 5: Vận dụng
    Xác định tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai||Đúng

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng||Sai

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng||Sai

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai||Đúng

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng||Sai

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng||Sai

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng||Sai

    (a) Tọa độ điểm O(0;0;1).

    Trong không gian Oxyz, gốc tọa độ O(0;0;0).

    » Chọn SAI.

    (b) Tọa độ vectơ \overrightarrow{OA} = (1;\ 2;\ 3).

    Điểm A(1;\ 2;\ 3), suy ra \overrightarrow{OA} = 1.\overrightarrow{i} +
2.\overrightarrow{j} + 3.\overrightarrow{k} = (1;\ 2;\ 3) .

    » Chọn ĐÚNG.

    (c) \overrightarrow{OB}
= 5.\overrightarrow{i} - \overrightarrow{k}.

    Ta có B(5;\ 0;\  - 1). Suy ra vectơ \overrightarrow{OB} =
5.\overrightarrow{i} - 1.\overrightarrow{k}.

    » Chọn ĐÚNG.

    (d) Nếu OABC hình bình hành, thì a + b + c =
2.

    Ta có \overrightarrow{OA} =
1.\overrightarrow{i} + 2.\overrightarrow{j} + 3.\overrightarrow{k} =
(1;\ 2;\ 3), C(a;b;c)

    \Rightarrow \overrightarrow{OC} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}\overrightarrow{CB} = \overrightarrow{OB} -
\overrightarrow{OC}

    = \left( 5.\overrightarrow{i} -1.\overrightarrow{k} \right) - \left( a.\overrightarrow{i} +b.\overrightarrow{j} + c.\overrightarrow{k} \right)= (5 - a;b; - 1 -c).

    OABC hình bình hành, thì \left\{ \begin{matrix}
5 - a = 1 \\
b = 2 \\
- 1 - c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2 \\
c = - 4 \\
\end{matrix} \right.. Khi đó a +
b + c = 2.

    » Chọn ĐÚNG.

  • Câu 6: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho ba điểm A(3;5; - 1),\ \ B(7;x;1)C(9;2;y). Để A,\ \ B,\ \ C thẳng hàng thì giá trị x + y bằng

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (4;x - 5;2),\
\ \overrightarrow{AC} = (6; - 3;y + 1)

    A,\ \ B,\ \ C thẳng hàng khi \overrightarrow{AB},\ \
\overrightarrow{AC} cùng phương

    \Leftrightarrow \frac{4}{6} = \frac{x -
5}{- 3} = \frac{2}{y + 1} \Leftrightarrow \left\{ \begin{matrix}
6(x - 5) = - 12 \\
4(y + 1) = 12 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 2 \\
\end{matrix} \right.

    Vậy x+y=5

  • Câu 7: Vận dụng cao
    Xác định tọa độ của máy bay

    Trong không gian với một hệ trục toạ độ cho trước, ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm A(800;500;7) đến điểm B(940;550;8) trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 5 phút tiếp theo là gì?

    A drawing of a point of a personDescription automatically generated with medium confidence

    Hướng dẫn:

    Gọi D(x;y;z) là vị trí của máy bay sau 5 phút tiếp theo. Vì hướng của máy bay không đổi nên \overrightarrow{AB} và \overrightarrow{BD} cùng hướng. Do vận tốc của máy bay không đổi và thời gian bay từ A đến B gấp đôi thời gian bay từ B đến D nên AB =
2BD.

    Do đó \overrightarrow{BD} =
\frac{1}{2}\overrightarrow{AB} = (70;25;0,5).

    Mặt khác, \overrightarrow{BD} = (x -
940;y - 550;z - 8) nên \left\{
\begin{matrix}
x - 940 = 70 \\
y - 550 = 25 \\
z - 8 = 0,5 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1010 \\
y = 575 \\
z = 8,5 \\
\end{matrix} \right.\  \Rightarrow D(1010;575;8,5).

    Vậy tọa độ của máy bay sau 5 phút tiếp theo là (1\ \ 010;575;8,5).

  • Câu 8: Thông hiểu
    Xác định tọa độ điểm M

    Trong không gian Oxyz, điểm M thuộc trục Ox và cách đều hai điểm A(4;2; - 1)B(2;1;0)

    Hướng dẫn:

    M \in Ox \Rightarrow
M(x;0;0).

    Ta có: \overrightarrow{MA} = (4 - x;2; -
1),\ \ \overrightarrow{MB} = (2 - x;1;0)

    M cách đều hai điểm A,\ \ B khi MA = MB

    \Leftrightarrow \sqrt{(4 - x)^{2} +
2^{2} + ( - 1)^{2}} = \sqrt{(2 - x)^{2} + 1^{2} + 0^{2}}

    \Leftrightarrow x = 4

  • Câu 9: Vận dụng
    Tìm tọa độ vecto của máy bay

    Cho biết máy bay Ađang bay với vận tốc \overrightarrow{u} =
(300;200;400) (đơn vị:km/h). Máy bay B ngược hướng và có tốc độ gấp 2 lần tốc độ của máy bay A. Tọa độ vectơ vận tốc \overrightarrow{v} của máy bay B

    Hướng dẫn:

    Tọa độ vectơ vận tốc \overrightarrow{v} của máy bay Blà:

    \overrightarrow{v} = -
2\overrightarrow{u} \Rightarrow \overrightarrow{v} = ( - 600; - 400; -
800)

  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8m, chiều rộng là 6m và chiều cao là 3m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét. Hãy tìm toạ độ của điểm treo đèn

    A rectangular box with a straight line and a straight lineDescription automatically generated with medium confidence

    Hướng dẫn:

    Gọi toạ độ các điểm B(6\ ;\ 0\ ;\ 0)\ ;\
C(6\ ;\ 8\ ;\ 0)\ ;\ D(0\ ;\ 8\ ;\ 0) như hình vẽ dưới đây:

    A diagram of a rectangular box with letters and numbersDescription automatically generated

    Gọi N là trung điểm của OC, N' là hình chiếu của N lên mặt phẳng trần nhà suy ra N' là điểm treo đèn.

    Khi đó N(3;\ 4\ ;\ 0) \Rightarrow
N'(3;\ 4\ ;\ 3)

    Vậy toạ độ của điểm treo đèn là (3;\ 4\
;\ 3)

  • Câu 11: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Dưới đây là một giá đỡ chịu hai lực. Biểu diễn từng lực dưới dạng vectơ Descartes

    a. \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 281\overrightarrow{j} +
200\overrightarrow{k}Sai||Đúng

    b. \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}Đúng||Sai

    c. Độ lớn lực tổng hợp lên giá đỡ bằng 485,297NĐúng||Sai

    d. Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}Sai||Đúng

    Đáp án là:

    Dưới đây là một giá đỡ chịu hai lực. Biểu diễn từng lực dưới dạng vectơ Descartes

    a. \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 281\overrightarrow{j} +
200\overrightarrow{k}Sai||Đúng

    b. \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}Đúng||Sai

    c. Độ lớn lực tổng hợp lên giá đỡ bằng 485,297NĐúng||Sai

    d. Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}Sai||Đúng

    (a) \overrightarrow{F_{2}} = - 200\overrightarrow{i} +
281\overrightarrow{j} + 200\overrightarrow{k}

    Độ lớn lực F_{2} tác dụng lên từng trục tọa độ Descartes như sau:

    F_{X} = - 400cos60{^\circ} = - 200\ \
N

    F_{Y} = 400cos45{^\circ} = 282,84\ \
N

    F_{Z} = 400cos60{^\circ} = 200\ \
N

    \Rightarrow \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 282,84\overrightarrow{j} +
200\overrightarrow{k}

    » Chọn SAI.

    (b) \overrightarrow{F_{1}} = 86,547\overrightarrow{i}
+ 185,601\overrightarrow{j} - 143,394\overrightarrow{k}

    Cắt mặt phẳng tọa độ lực F_{1} tác dụng lên trục tọa độ là xy là chiều ngang và - z là chiều dọc như hình vẽ

    Độ lớn lực F_{1} tác dụng lên trục tọa độ xy- z bằng

    F_{XY} = 250cos35{^\circ} =
204,788N

    F_{Z} = - 250sin35{^\circ} = -
143,394N

    Cắt mặt phẳng tọa độ lực F_{xy} tác dụng lên trục tọa độ là y là chiều ngang và x là chiều dọc như hình vẽ

    F_{X} = 204,788.sin25{^\circ} =
86,547N

    F_{Y} = 204,788.cos25{^\circ} =
185,601N

    Vậy \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}

    » Chọn ĐÚNG.

    (c) Độ lớn lực tổng hợp lên giá đỡ bằng 485,297N

    Lực tổng hợp tác dụng lên giá đỡ là :

    \overrightarrow{F_{R}} =
\overrightarrow{F_{1}} + \overrightarrow{F_{2}} = -
113,453\overrightarrow{i} + 468,441\overrightarrow{j} +
56,606\overrightarrow{k}

    F_{R} = \sqrt{113,453^{2} + 468,441^{2}
+ 56,606^{2}} \approx 485,297N

    » Chọn ĐÚNG.

    (d) Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}

    Gọi \alpha là góc tạo bởi lực tổng hợp lên trục Oy

    \cos\alpha = \frac{468,441}{485,297}
\Rightarrow \alpha \approx 15,145{^\circ}.

    » Chọn SAI.

  • Câu 12: Thông hiểu
    Tìm tọa độ điểm N

    Trong không gian với hệ tọa độ Oxyz, cho vectơ \overrightarrow{a} = \left( 2;\frac{1}{3}; - 5
\right) và điểm M(2;3;4). Tọa độ điểm N thỏa mãn \overrightarrow{MN} = \overrightarrow{a} là:

    Hướng dẫn:

    Gọi tọa độ điểm N\left( x_{N};y_{N};z_{N} \right), ta có: \overrightarrow{MN} = \left( x_{N} - 2;y_{N}
- 3;z_{N} - 4 \right).

    Ta có: \overrightarrow{MN} =
\overrightarrow{a} \Leftrightarrow \left\{ \begin{matrix}
x_{N} - 2 = 2 \\
y_{N} - 3 = \frac{1}{3} \\
z_{N} - 4 = - 5 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 2 + 2 \\
y_{N} = \frac{1}{3} + 3 \\
z_{N} = - 5 + 4 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 4 \\
y_{N} = \frac{10}{3} \\
z_{N} = - 1 \\
\end{matrix} \right..

    Vậy N\left( 4;\frac{10}{3}; - 1
\right).

  • Câu 13: Thông hiểu
    Tìm tọa độ điểm N

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(4;1; - 2) và vectơ \overrightarrow{u} = (4; - 2;6). Tìm toạ độ điểm N biết rằng \overrightarrow{MN} = -
\frac{1}{2}\overrightarrow{u}.

    Hướng dẫn:

    Ta có: - \frac{1}{2}\overrightarrow{u} =
( - 2;1; - 3).

    Gọi N(x;\ y;\ z). Ta có \overrightarrow{MN} = (x - 4;y - 1;z +
2).

    Khi đó \overrightarrow{MN} = -
\frac{1}{2}\overrightarrow{u} \Leftrightarrow \left\{ \begin{matrix}
x - 4 = - 2 \\
y - 1 = 1 \\
z + 2 = - 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
z = - 5 \\
\end{matrix} \right..

    Vậy N(2;\ 2;\  - 5).

  • Câu 14: Vận dụng cao
    Tìm tọa độ của máy bay theo yêu cầu

    Máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(600;400;20)đến điểm N(800;500;30) trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 15 phút tiếp theo bằng bao nhiêu?

    1

    Hướng dẫn:

    Gọi Q(x;y;z) là tọa độ của máy bay sau 15 phút tiếp theo.

    \overrightarrow{MN} =
(200;100;10)

    \overrightarrow{NQ} = (x - 800;y - 500;z
- 30)

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M \rightarrow N gấp 2 lần thời gian bay từ N \rightarrow Q nên MN = 2NQ

    Suy ra \overrightarrow{MN} =2\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}200 = 2(x - 800) \\100 = 2(y - 500) \\10 = 2(z - 30) \\\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}x = 900 \\y = 550 \\z = 35 \\\end{matrix} \right.\  \Rightarrow Q(900;550;35)

    Tọa độ của máy bay sau 15 phút tiếp theo là (900;550;35)

  • Câu 15: Vận dụng
    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho A(3;2; - 1), B( - 1;0;5). Điểm M(a;b;c) thay đổi thuộc mặt phẳng (Oxy). Tính giá trị của biểu thức T = a + b + c khi \left| \overrightarrow{MA} + \overrightarrow{MB}
\right| nhỏ nhất.

    Hướng dẫn:

    Gọi K là điểm thỏa: \overrightarrow{KA} + \overrightarrow{KB} =
\overrightarrow{0} \Leftrightarrow K(1;1;2).

    Ta có:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \left( \overrightarrow{MK} +
\overrightarrow{KA} \right) + \left( \overrightarrow{MK} +
\overrightarrow{KB} \right) \right|

    = \left| 2\overrightarrow{MK} + \left(
\overrightarrow{KA} + \overrightarrow{KB} \right) \right| = \left|
2\overrightarrow{MK} \right| = 2MK.

    Do đó \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| nhỏ nhất khi và chỉ khi MK nhỏ nhất.

    Điều này xảy ra khi và chỉ khi M là hình chiếu của K lên mặt phẳng (Oxy).

    Suy ra M(1;1;0).

    Vậy T = a + b + c = 1 + 1 + 0 =
2.

  • Câu 16: Vận dụng
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4, đỉnh A trùng với gốc O, các điểm B,D,A' lần lượt nằm trên các tia Ox,Oy,Oz.

    a. Tọa độ của điểm D là: (4;0;0) Sai||Đúng

    b. Tọa độ của vec tơ C là: (0;4;0) Sai||Đúng

    c. Tọa độ của vec tơ A' là: (0;0;4) Đúng||Sai

    d. Tọa độ của vec tơ C' là: (4;4;4) Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4, đỉnh A trùng với gốc O, các điểm B,D,A' lần lượt nằm trên các tia Ox,Oy,Oz.

    a. Tọa độ của điểm D là: (4;0;0) Sai||Đúng

    b. Tọa độ của vec tơ C là: (0;4;0) Sai||Đúng

    c. Tọa độ của vec tơ A' là: (0;0;4) Đúng||Sai

    d. Tọa độ của vec tơ C' là: (4;4;4) Đúng||Sai

    Hình vẽ minh họa

    (a) Tọa độ của điểm D là: (4;0;0)

    Do \overrightarrow{OD} cùng hướng với \overrightarrow{j}\left| \overrightarrow{OD} \right| = OD = 4
= 4\left| \overrightarrow{j} \right| nên \overrightarrow{OD} = 4\overrightarrow{j} hay \overrightarrow{OD} =
0\overrightarrow{i} + 4\overrightarrow{j} +
0\overrightarrow{k}.

    Suy ra: D(0;4;0).

    » Chọn SAI.

    (b) Tọa độ của vec tơ C là: (0;4;0)

    Do \overrightarrow{OB} cùng hướng với \overrightarrow{i}\left| \overrightarrow{OB} \right| = OB = 4
= 4\left| \overrightarrow{i} \right| nên \overrightarrow{AB} = 4\overrightarrow{i} hay \overrightarrow{OB} =
4\overrightarrow{i} + 0\overrightarrow{j} +
0\overrightarrow{k}.

    Theo quy tắc hình bình hành, ta có: \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD} = 4\overrightarrow{i} + 4\overrightarrow{j} +
0\overrightarrow{k}.

    Suy ra: C(4;4;0).

    » Chọn SAI.

    (c) Tọa độ của vec tơ A' là: (0;0;4)

    Do \overrightarrow{OA'} cùng hướng với \overrightarrow{k}\left| \overrightarrow{OA'} \right| =
OA' = 4 = 4\left| \overrightarrow{k} \right| nên \overrightarrow{OA'} =
4\overrightarrow{k} hay \overrightarrow{OA'} = 0\overrightarrow{i} +
0\overrightarrow{j} + 4\overrightarrow{k}.

    Suy ra: A'(0;0;4).

    » Chọn ĐÚNG.

    (d) Tọa độ của vec tơ C' là: (4;4;4).

    Theo quy tắc hình hộp, ta có: \overrightarrow{OC'} = \overrightarrow{OB} +
\overrightarrow{OD} + \overrightarrow{OA'} = 4\overrightarrow{i} +
4\overrightarrow{j} + 4\overrightarrow{k}.

    Suy ra: C'(4;4;4)

    » Chọn ĐÚNG.

  • Câu 17: Vận dụng cao
    Chọn phương án đúng

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2,\ \ SA vuông góc với đáy và SA bằng 1. Thiết lập hệ tọa độ như hình vẽ bên dưới, tọa độ điểm S\left(
a;\sqrt{b};c \right). Khi đó a + b
+ c bằng bao nhiêu?

    Hướng dẫn:

    Các vectơ đơn vị trên các trục Ox,Oy,Oz lần lươt là \overrightarrow{i} = \overrightarrow{OC},\ \
\overrightarrow{j} = \overrightarrow{OE},\ \ \overrightarrow{k} =
\overrightarrow{OH} với E là điểm thuộc tia Oy sao cho OE = 1H là điểm thuộc tia Oz sao cho OH
= 1.

    \Delta ABC đều và AO\bot BC nên O là trung điểm cùa BC.

    BC = 2 nên OB = OC = 1OA = \sqrt{3}.

    Vì \overrightarrow{OA}\overrightarrow{j} cùng hướng và OA = \sqrt{3} nên \overrightarrow{OA} =
\sqrt{3}\overrightarrow{j}.

    Theo quy tắc hình bình hành, ta có \overrightarrow{OS} = \overrightarrow{OA} +
\overrightarrow{OH} = \sqrt{3}\overrightarrow{j} +
\overrightarrow{k}.

    Suy ra S\left( 0;\sqrt{3};1
\right). Vậy a + b + c = 0 + 3 + 1
= 4

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyzcho hình hộp chữ nhật OABC.EFGH có các cạnh OA = 5, OC = 8, OE =
7 (xem hình vẽ dưới đây). Tọa độ H(x;y;z). Tính giá trị biểu thức P = 50x + 75y + 1000z

    Hướng dẫn:

    Ta có H \in (yOz) và hình chiếu của H lên Oy trùng với C nên H(0;\
8;\ 7).

    P = 50x + 75y + 1000z = 50.0 + 75.8 +
1000.7 = 7600.

  • Câu 19: Vận dụng
    Xác định tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A( - 1;2;3)B(3; - 1;2). Điểm M thỏa mãn MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB} có tọa độ là:

    Hướng dẫn:

    Từ giả thiết MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} =
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;A;B thẳng hàng và A;B nằm cùng phía so với điểm M do \frac{4MB}{MA} dương.

    Lại có MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    Vậy B là trung điểm của MA.

    Khi đó ta đươc tọa độ điểm M(7; -
4;1).

  • Câu 20: Thông hiểu
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho \overrightarrow{a} = (2; - 2;1)\ \overrightarrow{b} = (x - 1)\overrightarrow{i} +
\left( x^{2} - 3 \right)\overrightarrow{j} +
y\overrightarrow{j}. Khi \overrightarrow{a} = \overrightarrow{b} thì giá trị x - y bằng?

    Hướng dẫn:

    Ta có: \ \overrightarrow{b} = (x -1)\overrightarrow{i} + \left( x^{2} - 3 \right)\overrightarrow{j} +y\overrightarrow{j}\Rightarrow \overrightarrow{b} = \left( x - 1;x^{2}- 3;y \right).

    \overrightarrow{a} = \overrightarrow{b}
\Leftrightarrow \left\{ \begin{matrix}
x + 1 = 2 \\
x^{2} - 3 = - 2 \\
y = 1 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
x = 1;x = - 1 \\
y = 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} \right..

    Vậy x - y = 0.

  • Câu 21: Vận dụng cao
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5 , giao điểm hai đường chéo ACBD trùng với gốc O. Các vectơ \overrightarrow{OB},\ \ \overrightarrow{OC},\ \
\overrightarrow{OS} lần lượt cùng hướng với \overrightarrow{i}, \overrightarrow{j},\overrightarrow{k}OA = OS = 4 như hình bên dưới. Toạ độ vectơ \overrightarrow{AM} =
(a;b;c) với M là trung điểm của cạnh SC, khi đó a + b + c bằng bao nhiêu?

    Hướng dẫn:

    ABCD là hình thoi cạnh bằng 5 , O là giao điểm của ACBD nên O là trung điểm của ACBD.

    Xét \Delta OAB vuông tại O, có OB =
\sqrt{AB^{2} - OA^{2}} = \sqrt{25 - 16} = 3.

    \overrightarrow{OB}\overrightarrow{i} cùng hướng và OB = 3 nên \overrightarrow{OB} =
3\overrightarrow{i}.

    Vì \overrightarrow{OA}\overrightarrow{j} cùng hướng và OA = 4 nên \overrightarrow{OA} = -
4\overrightarrow{j}.

    Ta có \overrightarrow{AB} =
\overrightarrow{OB} - \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j}

    AC = 2OA = 8\overrightarrow{AC}\overrightarrow{j} cùng hướng nên \overrightarrow{AC} =
8\overrightarrow{j}.

    \overrightarrow{OS}\overrightarrow{k} cùng hướng và OS = 4 nên \overrightarrow{OS} =
4\overrightarrow{k}.

    \overrightarrow{SB} =
\overrightarrow{OB} - \overrightarrow{OS} = 3\overrightarrow{i} -
4\overrightarrow{k}

    Lại có \overrightarrow{AS} =
\overrightarrow{AB} + \overrightarrow{BS} = \left( 3\overrightarrow{i} +
4\overrightarrow{j} \right) - \left( 3\overrightarrow{i} -
4\overrightarrow{k} \right) = 4\overrightarrow{j} +
4\overrightarrow{k}.

    M là trung điểm của SC nên \overrightarrow{AM} = \frac{1}{2}\left(
\overrightarrow{AS} + \overrightarrow{AC} \right) = \frac{1}{2}\left(
4\overrightarrow{j} + 4\overrightarrow{k} + 8\overrightarrow{j} \right)
= 6\overrightarrow{j} + 2\overrightarrow{k}.

    Do đó \overrightarrow{AM} =
(0;6;2).

    Suy ra a + b + c = 0 + 6 + 2 =
8

  • Câu 22: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3)B(5;0;1). Điểm M thỏa mãn MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} có tọa độ là:

    Hướng dẫn:

    Từ giả thiết MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} = -
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;B;A thẳng hàng và A;B nằm khác phía so với điểm M do - 4\frac{MB}{MA} âm.

    Lại có MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    \Rightarrow \overrightarrow{MA} = -
2\overrightarrow{MB}.

    Gọi tọa độ M(x;y;z), khi đó

    \left\{ \begin{matrix}
1 - x = - 2(5 - x) \\
2 - y = - 2(0 - y) \\
3 - z = - 2(1 - z) \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{11}{3} \\
y = \frac{2}{3} \\
z = \frac{5}{3} \\
\end{matrix} \right.

  • Câu 23: Vận dụng
    Xác định toạ độ của vectơ biểu diễn độ dịch chuyển

    Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890\ km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyzđược lấy theo kilômét.

    A sunset over a cityDescription automatically generated with medium confidence

    Hướng dẫn:

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    890.\frac{1}{2} = 445(km)

    Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là (0;445;0).

  • Câu 24: Vận dụng cao
    Tính tổng a, b, c

    Cho tứ diện SABCABC là tam giác vuông tại B, BC = 3,\ \
BA = 2,\ \ SA vuông góc với mặt phẳng (ABC) và có độ dài bằng 2. Chọn hệ trục tọa độ như hình bên dưới. Điểm D(a;b;c) sao cho SBCD là hình bình hành. Khi đó a + b + c bằng bao nhiêu?

    Hướng dẫn:

    Các vectơ đơn vị trên các trục Bx,By,Bz lần lượt là \overrightarrow{i},\ \ \overrightarrow{j},\ \
\overrightarrow{k} có độ dài bằng 1.

    Vì \overrightarrow{BA} cùng hướng với \overrightarrow{j} và BA = 2 nên \overrightarrow{BA} =
2\overrightarrow{j}

    Gọi I \in Bz sao cho SABI là hình bình hành, ta có \overrightarrow{BI} cùng hướng với \overrightarrow{k} và BI = SA = 2 nên \overrightarrow{BI} =
3\overrightarrow{k}

    Theo quy tắc hình bình hành, ta có: \overrightarrow{BS} = \overrightarrow{BA} +
\overrightarrow{BI} = 2\overrightarrow{j} +
3\overrightarrow{k}

    Vì \overrightarrow{BC} cùng hướng với \overrightarrow{i} và BC = 3 nên \overrightarrow{BC} =
3\overrightarrow{i}

    Gọi \overrightarrow{BD} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}

    \overrightarrow{CD} =\overrightarrow{BD} - \overrightarrow{BC}= a\overrightarrow{i} +b\overrightarrow{j} + c\overrightarrow{k} - 3\overrightarrow{i}= (a -3)\overrightarrow{i} + b\overrightarrow{j} +c\overrightarrow{k}

    Để SBCD là hình bình hành thì

    \overrightarrow{BS} =
\overrightarrow{CD} \Leftrightarrow 2\overrightarrow{j} +
3\overrightarrow{k} = (a - 3)\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 = 0 \\
b = 2 \\
c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
c = 3 \\
\end{matrix} \right.

    Vậy a + b + c = 8

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (21%):
    2/3
  • Thông hiểu (46%):
    2/3
  • Vận dụng (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm