Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Bạn đã dùng hết 2 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12: Nhận dạng đồ thị hàm số

VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Nhận dạng đồ thị hàm số. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 35 câu
  • Điểm số bài kiểm tra: 35 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong dưới đây?

    Hướng dẫn:

    Từ hình dạng của đồ thị ta loại phương án y = x^{3} - 3x^{2}y = - x^{3} + 3x^{2}

    Nhận thấy\lim_{x ightarrow \pm
\infty}f(x) = - \infty suy ra hệ số của x^{4} âm nên chọn phương ány = - x^{4} +
2x^{2}.

  • Câu 2: Nhận biết
    Tìm hàm số theo yêu cầu

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Đây là đồ thị của hàm số bậc ba với hệ số a > 0 nên chọn y = x^{3} - 3x.

  • Câu 3: Nhận biết
    Chọn hàm số thích hợp

    Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

    Hướng dẫn:

    Đường cong trong hình vẽ là đồ thị hàm số y = ax^{3} + bx^{2} + cx + d với a > 0 nên đồ thị đã cho là đồ thị của hàm số y = x^{3} - 3x - 1.

  • Câu 4: Nhận biết
    Chọn phương án thích hợp

    Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

    Hướng dẫn:

    Đây là hình dáng của đồ thị hàm bậc bốn trùng phương có hệ số a > 0

  • Câu 5: Thông hiểu
    Chọn đáp án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?

    Hướng dẫn:

    Dựa vào dáng đồ thị, đây là hàm trùng phương nên loại y = - x^{3} + 3x - 1y = x^{3} - 3x - 1.

    Đồ thị có bề lõm hướng xuống nên chọn y =
- 2x^{4} + 4x^{2} - 1.

  • Câu 6: Thông hiểu
    Chọn phương án đúng

    Hình vẽ sau đây là đồ thị của một trong bốn hàm số cho ở các đáp án A,\ B,\ C,\ DA, B, C, D. Hỏi đó là hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị, ta có \lim_{x ightarrow
+ \infty}y = + \infty, loại phương án y = - x^{3} + 2x + 1.

    Xét phương án y = x^{3} + 2x + 1y' = 3x^{2} + 2 > 0,\ \ \forall
x\mathbb{\in R}, hàm số không có cực tri, loại phương án y = x^{3} + 2x + 1.

    Xét phương án y = x^{3} - 2x^{2} +
1y' = 3x^{2} - 6xy' đổi dấu khi đi qua các điểm x = 0,\ \ x = 2 nên hàm số đạt cực tri tại x = 0x = 2, loại phương án y = x^{3} - 2x^{2} + 1.

    Vậy phương án đúng là y = x^{3} - 2x +
1.

  • Câu 7: Nhận biết
    Xác định hàm số thỏa mãn đồ thị đã cho

    Hàm số nào dưới đây có đồ thị là đường cong trong hình bên?

    Hướng dẫn:

    Quan sát đồ thị của hàm số thấy đồ thị trên là đồ thị của hàm số trùng phương và \lim_{x ightarrow \pm
\infty}f(x) = - \infty suy ra hệ số a < 0.

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Hình vẽ bên dưới là đồ thị của hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số cắt trục Oy tai điểm có tọa độ(0;\ 1) nên chọn phương án y = \frac{2x + 1}{x +
1}.

  • Câu 9: Thông hiểu
    Xác định hàm số theo yêu cầu

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?

    Hướng dẫn:

    Đồ thị đã cho có hình dạng của đồ thị hàm số bậc ba y = ax^{3} + bx^{2} + cx + d nên loại phương án y = x^{4} - x^{2} + 1y = - x^{2} + x - 1

    Dựa vào đồ thị, ta có \lim_{x ightarrow
+ \infty}y = + \infty \Rightarrow a > 0 nên loại phương án y = - x^{3} + 3x +
1.

    Vậy hàm số cần tìm là: y = x^{3} - 3x +
1

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A,B,C,DA,B,C,D dưới đây. Hỏi hàm số đó là hàm số nào?

    Hướng dẫn:

    Từ đồ thị :\lim_{x ightarrow +
\infty}y = + \infty và đây là đồ thị hàm bậc ba nên ta chọn phương án y = x^{3} - 3x + 1.

  • Câu 11: Nhận biết
    Xác định hàm số

    Đường cong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

    Hướng dẫn:

    Đồ thị hình vẽ là đồ thị hàm số bậc ba có hệ số a > 0 nên chỉ có hàm số \mathbf{y
=}\mathbf{x}^{\mathbf{3}}\mathbf{-}\mathbf{3}\mathbf{x
+}\mathbf{2} thỏa mãn điều kiện trên.

  • Câu 12: Thông hiểu
    Xác định hàm số

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Từ hình có đây là hình dạng của đồ thị hàm bậc 4.

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow + \infty}f(x) = - \infty \Rightarrow a <
0

  • Câu 13: Nhận biết
    Tìm số nghiệm thực của phương trình

    Cho hàm số bậc ba y = f(x)y=f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1f(x)=1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 14: Thông hiểu
    Tìm hàm số tương ứng với đồ thị

    Đường con trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Vì từ đồ thị ta suy ra đồ thị của hàm phân thức có tiệm cận đứng và ngang x = 1;y = 1

  • Câu 15: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Dựa trên hình dáng đồ thị, ta loại y = {x^3} - 3{x^2} - 2 và y = x^{4} - x^{2} -
2

    Mặt khác từ đồ thị, ta thấy \lim_{x
ightarrow + \infty}y = - \infty nên loại y = - x^{4} + x^{2} -
2

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Đường cong trong hình là đồ thị hàm trùng phương  có hệ số y = a{x^4} + b{x^2} + c;\left( {a e 0} ight)a<0.

  • Câu 17: Thông hiểu
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Dạng hàm bậc ba nên loại y = x^{4} -
2x^{2} + 3; y = - x^{4} + 2x^{2} +
3

    Từ đồ thị ta có a > 0. Do đó loại y = - x^{4} + 2x^{2} + 3

    Vậy đáp án đúng cần tìm là: y = x^{3} -
3x^{2} + 3

  • Câu 18: Thông hiểu
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Dựa vào hình vẽ, ta thấy đồ thị hàm số có ba điểm cực trị nên loại các đáp án y = - x^{3} + 3x^{2} + 1y = x^{3} - 3x^{2} +
1.

    Mặt khác, ta thấy \lim_{x ightarrow +
\infty}\left( x^{4} - 2x^{2} + 1 ight) = + \infty nên chọn đáp án y = x^{3} - 3x^{2} + 1.

  • Câu 19: Thông hiểu
    Tìm hàm số thích hợp với đường cong

    Đường cong trong hình là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Hình vẽ trên là đồ thị của hàm số dạng y
= \frac{ax + b}{cx + d}\ \ (c eq 0;\ ad - bc eq 0)
\Rightarrow Loại phương án y =
x^{4} - 3x^{2}; y = x^{3} -
3x^{2}

    Ta thấy: Đồ thị có đường tiệm cận đứng là x = - 1 và đường tiệm cận ngang là y = 1

    Phương án y = \frac{- 2x + 1}{2x +
2}: Đồ thị có đường tiệm cận đứng là x = - 2 \Rightarrowloại y = \frac{- 2x + 1}{2x + 2}

    \Rightarrow y = \frac{x - 1}{x + 1} đúng.

  • Câu 20: Thông hiểu
    Chọn hàm số thích hợp

    Đường cong ở hình bên là đồ thị của hàm số y = \frac{ax + b}{cx + d}y=ax+bcx+d với a,b,c,da,b,c,d là các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào đồ thị ta nhận thấy tiệm cận đứng bằng 2, hàm số nghịch biến vậy chọn B

  • Câu 21: Nhận biết
    Chọn đáp án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Đường cong có dạng của đồ thị hàm số bậc 3 với hệ số a
> 0 nên chỉ có hàm số y = x^{3}
- 3x thỏa yêu cầu bài toán.

  • Câu 22: Nhận biết
    Chọn phương án thích hợp

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số là đồ thị của hàm số bậc ba nên loại y = x^{4} - 3x^{2} - 1y = - x^{4} + x^{2} - 1

    Đồ thi hàm số bậc ba có hệ số a >
0 nên y = x^{3} - 3x - 1 đúng.

  • Câu 23: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số a < 0 nên đáp án y = - x^{3} + 3x^{2} - 1 đúng.

  • Câu 24: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên

    Hướng dẫn:

    Trong bốn hàm số đã cho thì chỉ có hàm số y = - x^{3} + 3x + 1 (hàm số đa thức bậc ba với hệ số a < 0) có dạng đồ thị như đường cong trong hình.

  • Câu 25: Thông hiểu
    Chọn phương án thích hợp

    Cho đường cong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi đó là hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị suy ra tiệm cận đứng x = -
1 loại y = \frac{2x + 3}{x +
1}y = \frac{2x - 2}{x -
1}

    Đồ thị hàm số giao với trục hoành có hoành độ dương nên loại y = \frac{2x + 1}{x - 1}suy ra chọn y = \frac{2x - 1}{x + 1}

  • Câu 26: Nhận biết
    Chọn đáp án thích hợp

    Đồ thị hàm số nào dưới đây có dạng như đường cong hình bên

    Hướng dẫn:

    Qua đồ thị là hàm bậc 3 nên loại y =
x^{4} - 2x^{2} - 2, y = - x^{4} + 2x^{2} - 2

    Bên phải ngoài cùng của đồ thị đi xuống nên hệ số a < 0

    \Rightarrow Loại đáp án y = x^{3} - 3x^{2} - 2

  • Câu 27: Thông hiểu
    Chọn phương án thích hợp

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Dựa vào hình vẽ suy ra hàm số đã cho có 3 cực trịightarrow loại y = x^{3} - x^{2} - 1,

    y = - x^{3} + x^{2} - 1

    Mặt khác nhánh bên tay phải của đồ thị hàm số đi lên suy ra hệ số a > 0 ightarrow Chọn y = x^{4} - 2x^{2} - 1

  • Câu 28: Nhận biết
    Chọn phương án thích hợp

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Dạng đồ thị hình bên là đồ thị hàm số trùng phương y = ax^{4} + bx^{2} + c có hệ số a < 0.

    Do đó, chỉ có đồ thị ở đáp án y = -
2x^{4} + 4x^{2} + 1 là thỏa mãn.

  • Câu 29: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho trước

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Quan sát đồ thị ta thấy đây là đồ thị của hàm số y = ax^{4} + bx^{2} + c(a > 0).

    Vậy chọn y = x^{4} - 2x^{2} -
2

  • Câu 30: Nhận biết
    Chọn đáp án đúng

    Đồ thị của hàm số dưới đây có dạng như đường cong bên?

    Hướng dẫn:

    Từ đồ thị hàm số đã cho ta nhận dạng được hàm số là hàm số bậc 3 với a > 0.

    Suy ra chọn y = x^{3} - 3x +
1.

  • Câu 31: Nhận biết
    Chọn hàm số thích hợp với đồ thị

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Dựa vào dáng đồ thị, ta chọn y = \frac{x
- 3}{x - 1}.

  • Câu 32: Thông hiểu
    Tìm hàm số theo yêu cầu

    Đường cong ở hình bên dưới là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị ta thấy đây là hình ảnh đồ thị của hàm số bậc ba nên loại đáp án \mathbf{y =
-}\mathbf{x}^{\mathbf{4}}\mathbf{+}\mathbf{2}\mathbf{x}^{\mathbf{2}}\mathbf{+}\mathbf{1}\mathbf{y
=}\mathbf{x}^{\mathbf{4}}\mathbf{-}\mathbf{2}\mathbf{x}^{\mathbf{2}}\mathbf{+}\mathbf{1}

    Mặt khác dựa vào đồ thị ta có \lim_{x
ightarrow + \infty}y = + \infty nên hệ số của x^{3} dương nên ta chọn đáp án y = x^{3} - 3x^{2} + 3

  • Câu 33: Nhận biết
    Chọn hàm số tương ứng với đồ thị đã cho

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Nhìn đồ thị khẳng định đồ thị hàm trùng phương loại y = x^{3} - 3x^{2} - 1y = - x^{3} + 3x^{2} - 1

     \lim_{x ightarrow
\pm \infty}y = - \infty nên loại y
= x^{4} - 3x^{2} - 1.

    Vậy đáp án cần tìm là: y = - x^{4} +
3x^{2} - 1

  • Câu 34: Thông hiểu
    Xác định hàm số

    Đường cong trong hình bên là của đồ thị hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số trên là đồ thị hàm trùng phương có 3 cực trị và có a < 0.

    Chọn đáp án y = - x^{4} + 2x^{2} + 2

  • Câu 35: Thông hiểu
    Chọn hàm số tương ứng đồ thị

    Đường cong ở hình bên là đồ thị của hàm số y = \frac{ax + b}{cx + d}y=ax+bcx+d với a,b,c,da,b,c,dlà các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có :

    Dựa vào hình dáng của đồ thị ta được:

    + Điều kiện x eq 1

    + Đây là đồ thị của hàm nghịch biến

    Từ đó ta được y' < 0,\forall x
eq 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (54%):
    2/3
  • Thông hiểu (46%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Bạn còn 2 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 2 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo

Nhiều người đang xem

🖼️

Chuyên đề Toán 12

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng