Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Tính phương sai và độ lệch chuẩn Có đáp án

Trắc nghiệm Toán 12: Phương sai và độ lệch chuẩn - Có hướng dẫn chi tiết

Chào mừng các bạn đến với chuyên đề Bài tập tính phương sai và độ lệch chuẩn có đáp án – một phần quan trọng trong chương trình Thống kê và Xác suất lớp 12 và ôn thi THPT Quốc gia. Trong bài viết này, bạn sẽ được luyện tập với các dạng bài tập tiêu biểu, từ cơ bản đến nâng cao, kèm lời giải chi tiết. Đây là tài liệu hữu ích giúp bạn hiểu rõ bản chất của phương sai và độ lệch chuẩn, cũng như cách áp dụng công thức một cách chính xác và nhanh chóng trong quá trình làm bài.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 33 câu
  • Điểm số bài kiểm tra: 33 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định phương sai của mẫu số liệu ghép nhóm

    Cân nặng của các học sinh lớp 10A trường Trung học phổ thông Mnhư sau.

    Cân nặng(kg)

    \lbrack 30;36) \lbrack 36;42) \lbrack 42;48) \lbrack 48;54) \lbrack 54;60) \lbrack 60;66)

    Số học sinh lớp

    1

    2

    5

    15

    9

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần nhất với kết quả nào sau đây.

    Hướng dẫn:

    Cân nặng trung bình của học sinh lớp 10A là.

    \overline{x_{A}} = \frac{1}{38}(1.33 +
2.39 + 5.45 + 15.51 + 9.57 + 6.63) = 52,4\ \ kg

    Độ lệch chuẩn về nhóm cân nặng của học sinh lớp 10A

    {s^{2}}_{A} = \frac{1}{38}\lbrack 1.(33 -
52,4)^{2} + 2.(39 - 52,4)^{2} + 5.(45 - 52,4)^{2} + 15.(51 - 52,4)^{2} + 9.(57 - 52,4)^{2} + 6.(63 -
52,4)^{2}\rbrack \approx 50,4

  • Câu 2: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Một mẫu số liệu có bảng tần số ghép nhóm như sau:

    Nhóm

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21)

    Tần số

    4 8 13 6 4

    Phương sai của mẫu số liệu là (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Xét mẫu số liệu ghép nhóm cho bởi bảng sau

    Nhóm

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21)

    Giá trị đại diện

    3

    7

    11

    15

    19

    Tần số

    4 8 13 6 4

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{1}{35}.(3.4 + 7.8 + 11.13 +
15.6 + 19.4) \approx 10,77

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{35}\left( 4.3^{2} +
8.7^{2} + 13.11^{2} + 6.15^{2} + 4.19^{2} \right) - 10,77^{2} \approx
21,01

  • Câu 3: Thông hiểu
    Xác định độ lệch chuẩn của mẫu số liệu đã cho

    Một bác tài xế thống kê lại độ dài quãng đường (đơn vị: km) bác đã lái xe mỗi ngày trong một tháng ở bảng sau:

    Độ dài quãng đường (km)Số ngày510942

    Độ dài quãng đường (km)

    \lbrack 50;\ 100) \lbrack 100;\ 150) \lbrack 150;\ 200) \lbrack 200;\ 250) \lbrack 250;\ 300)

    Số ngày

    5

    10

    9

    4

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    + Cỡ mẫu: n = 30.

    Độ dài quãng đường (km)

    \lbrack 50;\ 100) \lbrack 100;\ 150) \lbrack 150;\ 200) \lbrack 200;\ 250) \lbrack 250;\ 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    + Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{75.5 + 125.10 +
175.9 + 225.4 + 275.2}{30} = 155.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{30}(75^{2}.5 +
125^{2}.10 + 175^{2}.9+ 225^{2}.4 + 275^{2}.2) - 155^{2} =
3100.

    + Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S = \sqrt{3100} \approx 55,68.

  • Câu 4: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Khối lượng các túi đường được đóng gói ( đơn vị là kg ) được thống kê ở bảng sau.

    Khối lượng (kg)

    \lbrack 1,5;1,7) \lbrack 1,7;1,9) \lbrack 1,9;2,1) \lbrack 2,1;2,3) \lbrack 2,3;2,5)

    Số túi đường

    3

    5

    23

    5

    4

    Phương sai của mẫu số liệu ghép nhóm trên gần nhất với kết quả nào sau đây.

    Hướng dẫn:

    Khối lượng trung bình của 40 túi đường là.

    \overline{x} = \frac{1}{40}(3.1,6 +
5.1,8 + 23.2 + 5.2,2 + 4.2,4) \approx 2\ \ kg

    Phương sai của mẫu số liệu ghép nhóm trên là.

    s^{2} = \frac{1}{40}( 3.(1,6 -2)^{2} + 5.(1,8 - 2)^{2} + 23.(2 - 2)^{2}+ 5.(2,2 - 2)^{2} + 4.(2,4 -2)^{2} ) \approx 0,04

  • Câu 5: Thông hiểu
    Tính phương sai của mẫu số liệu đã cho

    Khảo sát thời gian tự học bài ở nhà của học sinh khối 9 ở trường X, ta thu được bảng sau:

    Thời gian(phút)

    \lbrack 0\ ;\ 30) \lbrack 30\ ;\ 60) \lbrack 60\ ;\ 90) \lbrack 90\ ;\ 120) \lbrack 120\ ;\ 150)

    Số học sinh

    9 10 9 15 7

    Phương sai của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Thời gian(phút)\lbrack 0\ ;\ 30)\lbrack 30\ ;\ 60)\lbrack 60\ ;\ 90)\lbrack 90\ ;\ 120)\lbrack 120\ ;\ 150)Giá trị đại diện154575105135Số học sinh9109157

    Thời gian(phút)

    \lbrack 0\ ;\ 30) \lbrack 30\ ;\ 60) \lbrack 60\ ;\ 90) \lbrack 90\ ;\ 120) \lbrack 120\ ;\ 150)

    Giá trị đại diện

     15 45  75  105  135 

    Số học sinh

    9 10 9 15 7

    Thời gian trung bình tự học ở nhà của các em học sinh đó là:

    \overline{x} = \frac{9.15 + 10.45 + 9.75
+ 15.105 + 7.135}{50} = 75,6(phút).

    Phương sai của mẫu số kiệu ghép nhóm là

    S^{2} = \frac{1}{50}\left( 9.15^{2} +
10.45^{2} + 9.75^{2} + 15.105^{2} + 7.135^{2} \right) - 75,6^{2} =
1601,64

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Anh An đầu tư số tiền bằng nhau vào hai lĩnh vực kinh doanh A,B. Anh An thống kê số tiền thu được mỗi tháng trong vòng 60 tháng theo mỗi lĩnh vực cho kết quả như sau:

    A white grid with black numbersDescription automatically generated

    Đáp án nào sau đây đúng?

    Hướng dẫn:

    Ta có

    A table with numbers and lettersDescription automatically generated

    Số tiền trung bình thu được khi đầu tư vào các lĩnh vực A,B tương ứng là:

    {\overline{x}}_{A} = \frac{1}{60}(5 \cdot
7,5 + \ldots + 5 \cdot 27,5) = 17,5;

    {\overline{x}}_{B} = \frac{1}{60}(20
\cdot 7,5 + \ldots + 20 \cdot 27,5) = 17,5

    Độ lệch chuẩn của số tiền thu được hàng tháng khi đầu tư vào các lĩnh vực A,B tương ứng là

    s_{A} = \sqrt{\frac{1}{60}\left( 5 \cdot
7,5^{2} + \ldots + 5 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
5;

    s_{B} = \sqrt{\frac{1}{60}\left( 20
\cdot 7,5^{2} + \ldots + 20 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
8

    Như vậy, về trung bình đầu tư vào các lĩnh vực A,Bsố tiền thu được hàng tháng như nhau tuy nhiên độ lệch chuẩn của mẫu số liệu về số tiền thu được hàng tháng khi đầu tư vào lĩnh vực B cao hơn khi đầu tư vào lĩnh vực A. Người ta nói rằng, đầu tư vào lĩnh vực B là "rủi ro" hơn.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Số đặc trưng nào sau đây thay đổi khi ta cộng tất cả các giá trị của mẫu số liệu với 1 số không đổi d?

    Hướng dẫn:

    Giả sử mẫu số liệu có n giá trị được sắp xếp theo thứ tự không giảm là x_{1};\ x_{2};\ \ldots;\ x_{n}. Khi đó:

    Giá trị trung bình \overline{x} =
\frac{1}{n}\left( x_{1} + \ x_{2} + \ \ldots + x_{n} \right)

    Khoảng biến thiên R = x_{n} -
x_{1}.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1}.

    Phương sai {S_{x}}^{2} =
\frac{1}{n}\left\lbrack \left( x_{1} - \overline{x} \right)^{2} + \left(
x_{2} - \overline{x} \right)^{2} + ... + \left( x_{n} - \overline{x}
\right)^{2} \right\rbrack

    Độ lệch chuẩn S_{x} =
\sqrt{{S_{x}}^{2}}

    Khi cộng tất cả các giá trị với số không đổi d ta được dãy số liệu x_{1} + d;\ x_{2} + d;\ \ldots;\ x_{n} + d

    Giá trị trung bình {\overline{x}}^{'}
= \frac{1}{n}\left( x_{1} + d + \ x_{2} + d + \ \ldots + x_{n} + d
\right)\  = \overline{x} + d

    Khoảng biến thiên R' = x_{n} + d -
\left( x_{1} + d \right) = x_{n} - x_{1} = R.

    Khoảng tứ phân vị {\Delta_{Q}}^{'} =
Q_{3} + d - \left( Q_{1} + d \right) = \Delta_{Q}.

    Phương sai

    {{S^{'}}_{x}}^{2} =
\frac{1}{n}\lbrack\left( x_{1} + d - \overline{x} - d \right)^{2} +
\left( x_{2} + d - \overline{x} - d \right)^{2}

    + ... + \left( x_{n} + d - \overline{x}
- d \right)^{2}\rbrack = {S_{x}}^{2}

    Độ lệch chuẩn {S'}_{x} =
\sqrt{{{S'}_{x}}^{2}} = S_{x}

    Từ đó suy ra giá trị trung bình sẽ thay đổi khi ta cộng tất cả các giá trị của dãy số liệu với một số không đổi d.

  • Câu 8: Thông hiểu
    Tính phương sai

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường (km)

    \lbrack 2,7;\ 3,0) \lbrack 3,0;\ 3,3) \lbrack 3,3;\ 3,6) \lbrack 3,6;\ 3,9) \lbrack 3,9;\ 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    + Cỡ mẫu: n = 20.

    Quãng đường (km)

    \lbrack 2,7;\ 3,0) \lbrack 3,0;\ 3,3) \lbrack 3,3;\ 3,6) \lbrack 3,6;\ 3,9) \lbrack 3,9;\ 4,2)

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    + Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}(2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5+ 3,75^{2}.4 + 4,05^{2}.2) - 3,39^{2}
\approx 0,13.

  • Câu 9: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Ta có bảng số liệu như sau:

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    Số trung bình:

    \overline{x} = \frac{3.2,85 + 6.3,15 +
5.3,45 + 4.3,75 + 2.4,05}{20} = 3,39

    Phương sai:

    S^{2} = \frac{3.2,85^{2} + 6.3,15^{2} +
5.3,45^{2} + 4.3,75^{2} + 2.4,05^{2}}{20} - 3,39^{2} =
0,1314

  • Câu 10: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Cho bảng phân bố tần số ghép lớp về độ dài của 60 lá dương xỉ trưởng thành như sau sau:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Tần số

    8 18 24 10

    Tính độ lệch chuẩn bảng phân bố tần số ghép lớp đã cho

    Hướng dẫn:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Giá trị đại diện

     15 25  35  45 

    Tần số

    8 18 24 10

    Trước hết ta có \overline{x} = \frac{15.8
+ 25.18 + 35.24 + 45.10}{60} = 31.

    Khi đó phương sai

    s_{x}^{2} = \lbrack 8.(15 - 31)^{2} + 18
\cdot (25 - 31)^{2} + 24.(35 - 31)^{2} + 10.(45 -
31)^{2}\rbrack.\frac{1}{60} = 84.

    s_{x} = \sqrt{s_{x}^{2}} = \sqrt{84}
\approx 9,2

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Đại lượng nào đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu?

    Hướng dẫn:

    Khoảng tứ phân vị dùng để đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu.

  • Câu 12: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 \times 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Ta có:

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    _6

    8

    4

    3

    Số trung bình: \overline{x} = \frac{4.9 +
6.11 + 8.13 + 4.15 + 3.17}{25} = 12,68

    Phương sai:

    s^{2} = \lbrack 4.(9 - 12,68)^{2} +6.(11 - 12,68)^{2} + 8.(13 - 12,68)^{2}+ 4.(15 - 12,68)^{2} + 3.(17 -12,68)^{2}\rbrack.\frac{1}{25} \approx 5,98

  • Câu 13: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 \times 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    \lbrack 8;\ 10) \lbrack 10;\ 12) \lbrack 12;\ 14) \lbrack 14; 16) \lbrack 16;\ 18)
    Số lần

    4

    6

    8

    4

    3

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    + Cỡ mẫu: n = 25.

    Thời gian giải rubik (giây)

    \lbrack 8;\ 10) \lbrack 10;\ 12) \lbrack 12;\ 14) \lbrack 14; 16) \lbrack 16;\ 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    + Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{9.4 + 11.6 + 13.8 + 15.4 +
17.3}{25} = 12,68.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{25}(9^{2}.4 + 11^{2}.6
+ 13^{2}.8+ 15^{2}.4 + 17^{2}.3) - 12,68^{2} =
\frac{3736}{625}.

    + Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S = \sqrt{\frac{3736}{625}} \approx2,44.

  • Câu 14: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Số trung bình:

    \overline{x} =
\frac{6.22,5 + 6.27,5 + 4.32,5 + 37,5 + 42,5}{18} \approx
28,33

    Phương sai:

    s^{2} = \frac{6.22,5^{2} + 6.27,5^{2} +
4.32,5^{2} + 37,5^{2} + 42,5^{2}}{18} - 28,33^{2} = 31,25\begin{matrix}
\\
\\
\end{matrix}

    Độ lệch chuẩn s = \sqrt{s^{2}} =
\sqrt{31,25} \approx 5,59

  • Câu 15: Nhận biết
    Chọn phương án đúng

    Để so sánh mức độ phân tán của các mẫu số liệu ghép nhóm có cùng số trung bình ta dùng đại lượng nào?

    Hướng dẫn:

    Để so sánh mức độ phân tán của các mẫu số liệu ghép nhóm có cùng số trung bình ta dùng phương sai và độ lệch chuẩn.

  • Câu 16: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu đãcho

    Thời gian truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau:

    Thời gian (phút)

    \lbrack 9,5; 12,5) \lbrack 12,5;15,5) \lbrack 15,5;18,5) \lbrack 18,5;21,5) \lbrack 21,5;24,5)

    Số học sinh

    3

    12

    15

    24

    2

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Thời gian (phút)

    \lbrack 9,5; 12,5) \lbrack 12,5;15,5) \lbrack 15,5;18,5) \lbrack 18,5;21,5) \lbrack 21,5;24,5)

    Giá trị đại diện

     11

    14

    17

    20

    23

    Số học sinh

    3

    12

    15

    24

    2

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{56}.(3.11 +
12.14 + 15.17 + 24.20 + 2.23) \approx 17,54

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{56}\left( 3.11^{2} +
12.14^{2} + 15.17^{2} + 24.20^{2} + 2.23^{2} \right) - 17,54^{2} \approx
8,56

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{8,56} \approx 2,93

  • Câu 17: Vận dụng
    Chọn khẳng định đúng

    Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu AB trong 50 ngày giao dịch liên tiếp.

    Giá đóng cửa

    \lbrack 120;122) \lbrack 122;124) \lbrack 124;126) \lbrack 126;128) \lbrack 128;130)

    Số ngày giao dịch

    của cổ phiếu A

    8 9 12 10 11

    Số ngày giao dịch

    của cổ phiếu B

    16 4 3 6 21

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn. Chọn khẳng định đúng.

    Hướng dẫn:

    Ta có bảng thống kê theo giá trị đại diện

    Giá đóng cửa

     121 123  125  127  129 

    Số ngày giao dịch

    của cổ phiếu A

    8 9 12 10 11

    Số ngày giao dịch

    của cổ phiếu B

    16 4 3 6 21

    Xét mẫu số liệu của cổ phiếu A

    Số trung bình của mẫu số liệu là

    {\overline{x}}_{A} = \frac{1}{50}.(8.121
+ 9.123 + 12.125 + 10.127 + 11.129) = 125,28

    Phương sai của mẫu số liệu ghép nhóm là

    {S_{A}}^{2} = \frac{1}{50}.\left(
8.121^{2} + 9.123^{2} + 12.125^{2} + 10.127^{2} + 11.129^{2} \right) -
125,28^{2} = 7,5216

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là

    S_{A} = \sqrt{7,5216}

    Xét mẫu số liệu của cổ phiếu B

    Số trung bình của mẫu số liệu là

    {\overline{x}}_{B} =\frac{1}{50}.(16.121 + 4.123 + 3.125 + 6.127 + 21.129)= 125,48

    Phương sai của mẫu số liệu ghép nhóm là

    {S_{B}}^{2} = \frac{1}{50}.\left(
16.121^{2} + 4.123^{2} + 3.125^{2} + 6.127^{2} + 21.129^{2} \right) -
125,48^{2} = 12,4096

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là

    S_{B} = \sqrt{12,4096}

    Ta có S_{A} < S_{B} nên giá đóng cửa của cổ phiếu A ít phân tán hơn giá đóng cửa của cổ phiếu B.

  • Câu 18: Thông hiểu
    Xác định nhận xét sai

    Bộ phận kiểm tra chất lượng sản phẩm dùng máy để đo (chính xác đến 0,001\ mm) độ dày của một chi tiết máy. Kết quả đo một số sản phẩm được thống kê trong bảng sau:

    A table with numbers and lettersDescription automatically generated

    Nhận xét nào sau đây sai?

    Hướng dẫn:

    Ta có cỡ mẫu n = 60.

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{3 \cdot 18,5 + 7
\cdot 19,5 + 23 \cdot 20,5 + 25 \cdot 21,5 + 2 \cdot 22,5}{60} =
\frac{623}{30} \approx 20,77.

    Phương sai của mẫu số liệu là

    S^{2} = \frac{1}{60}( 3 \cdot18,5^{2} + 7 \cdot 19,5^{2} + 23 \cdot 20,5^{2}+ 25 \cdot 21,5^{2} + 2\cdot 22,5^{2} ) - \left( \frac{623}{30} \right)^{2} =\frac{179}{225}.

    Độ lệch chuẩn của mẫu số liệu là S^{2} =
\sqrt{\frac{179}{225}} = \frac{\sqrt{179}}{15} \approx
0,89.

  • Câu 19: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Độ lệch chuẩn của mẫu số liệu trên gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Bảng tần số ghép nhóm theo giá trị đại diện là

    Số trung bình: \overline{x} = \frac{2.6 +
7.8 + 7.10 + 3.12 + 1.14}{20} = 9,4.

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{20}.\lbrack 2(6 -
9,4)^{2} + 7(8 - 9,4)^{2} + 7(10 - 9,4)^{2}+ 3(12 - 9,4)^{2} + 1.(14 -
9,4)^{2}\rbrack \approx 4,04

    s = \sqrt{s^{2}} = \sqrt{4,04} \approx
2,01

  • Câu 20: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Lan đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị km) của bác Lan trong 20 ngày được thống kê lại ở bảng sau

    Phương sai của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Xét mẫu số liệu ghép nhóm cho bởi bảng sau

    A table with numbers and symbolsDescription automatically generated

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{20}.(2,85.3 +
3,15.6 + 3,45.5 + 3,75.4 + 4,05.2) = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}(3.2,85^{2} +
6.3,15^{2} + 5.3,45^{2}+ 4.3,45^{2} + 2.4,05^{2}) - 3,39^{2} =
0,1314.

  • Câu 21: Vận dụng
    Chọn câu trả lời đúng nhất

    Trong 30 ngày, một nhà đầu tư đã theo dõi giá cổ phiếu của hai công ty G và H vào phiên mở cửa mỗi ngày. Thông tin được ghi lại ở hai bảng dưới đây:

    A white paper with black textDescription automatically generated

    Chọn câu trả lời đúng nhất biết độ lệch chuẩn càng cao thì tỷ lệ rủi ro càng lớn:

    Hướng dẫn:

    Công ty G:

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{51 \cdot 3 + 53
\cdot 7 + 55 \cdot 9 + 57 \cdot 8 + 59 \cdot 3}{30} \approx
55,1.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{51^{2} \cdot 3
+ 53^{2} \cdot 7 + 55^{2} \cdot 9 + 57^{2} \cdot 8 + 59^{2} \cdot 3}{30}
\approx 3037,5.

    Từ đó ta có độ lệch chuẩn của mẫu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{5,2} \approx 2,3.

    Công ty H

    A white rectangular box with black numbersDescription automatically generated

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{41 \cdot 6 + 43
\cdot 7 + 45 \cdot 5 + 47 \cdot 7 + 49 \cdot 5}{30} \approx
44,9.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{41^{2} \cdot 6 +
43^{2} \cdot 7 + 45^{2} \cdot 5 + 47^{2} \cdot 7 + 49^{2} \cdot 5}{30}
\approx 2020,7.

    Từ đó ta có độ lệch chuẩn của mấu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{7,7} \approx 2,8.

    Từ kết quả trên, ta thấy công ty Hrủi ro hơn

  • Câu 22: Vận dụng
    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Hướng dẫn:

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 23: Thông hiểu
    Định phương sai của mẫu số liệu ghép nhóm

    Bạn Mai rất thích múa. Thời gian tập múa mỗi ngày trong thời gian gần đây của bạn Mai được thống kê lại ở bảng sau:

    Thời gian (phút)

    \lbrack 20;\ 25) \lbrack 25;\ 30) \lbrack 30;\ 35) \lbrack 35;\ 40) \lbrack 40;\ \ 45)

    Số ngày

    6

    6

    4

    1

    1

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    + Cỡ mẫu: n = 18.

    Thời gian (phút)

    \lbrack 20;\ 25) \lbrack 25;\ 30) \lbrack 30;\ 35) \lbrack 35;\ 40) \lbrack 40;\ \ 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    + Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{22,5.6 + 27,5.6 + 32,5.4 +
37,5.1 + 42,5.1}{18} = \frac{85}{3}.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{18}(22,5^{2}.6 +
27,5^{2}.6 + 32,5^{2}.4+ 37,5^{2}.1 + 42,5^{2}.1) - \left(
\frac{85}{3} \right)^{2} = 31,25.

  • Câu 24: Vận dụng
    Chọn kết luận đúng

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A,B cho kết quả như sau

    A white square with numbersDescription automatically generated

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro đầu tư các lĩnh vực có giá trị trung bình tiền lãi gần bằng nhau. Lĩnh vực nào có phương sai, độ lệch chuẩn tiền lãi cao hơn thì được coi là có độ rủi ro lớn hơn.

    Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

    Hướng dẫn:

    Lĩnh vực A

    A white rectangular grid with numbersDescription automatically generated with medium confidence

    Lĩnh vực B

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của hai lĩnh vực AB

    {\overline{x}}_{A} = \frac{1}{25}.(2.7,5
+ 5.12,5 + 8.17,5 + 6.22,5 + 4.27,5) = 18,5

    {\overline{x}}_{B} = \frac{1}{25}.(8.7,5
+ 4.12,5 + 2.17,5 + 5.22,5 + 6.27,5) = 16,9

    Về độ trung bình đầu tư vào lĩnh vực A lãi hơn lĩnh vực B.

    Độ lệch chuẩn của hai lĩnh vực AB

    s_{A} = \sqrt{\frac{1}{25}.\left(
2.7,5^{2} + 5.12,5^{2} + 8.17,5^{2} + 6.22,5^{2} + 4.27,5^{2} \right) -
18,5^{2}} = 5,8

    s_{B} = \sqrt{\frac{1}{25}.\left(
8.7,5^{2} + 4.12,5^{2} + 2.17,5^{2} + 5.22,5^{2} + 6.27,5^{2} \right) -
16,9^{2}} = 8,04.

    Như vậy độ lệch chuẩn của mẫu số liệu thu tiền được hàng tháng khi đầu tư vào lĩnh vực B cao hơn lĩnh vực A nên đầu tư vào lĩnh vực B rủi ro hơn.

  • Câu 25: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Thống kê tổng số giờ nắng trong tháng 9 tại một trạm quan trắc đặt ở Cà Mau trong các năm từ 2002 đến 2021 được thống kê như sau:

    Số giờ nắng

    \lbrack 80;98) \lbrack 98;116) \lbrack 116;134) \lbrack 134;152) \lbrack 152;170)

    Số năm

    3

    6

    3

    5

    3

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần nghìn)

    Hướng dẫn:

    Ta có bảng sau:

    Số giờ nắng

    \lbrack 80;98) \lbrack 98;116) \lbrack 116;134) \lbrack 134;152) \lbrack 152;170)

    Giá trị đại diện

     89 107  125 143  161 

    Số năm

    3

    6

    3

    5

    3

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{20}.(3.89 +
6.107 + 3.125 + 5.143 + 3.161) = 124,1

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}.\left( 3.89^{2} +
6.107^{2} + 3.125^{2} + 5.143^{2} + 3.161^{2} \right) - 124,1^{2} =
566,19

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{566,19} \approx 23,795

  • Câu 26: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Cho mẫu số liệu ghép nhóm về thống kê thời gian hoàn thành (phút) một bài kiểm tra trực tuyến của 100 học sinh, ta có bảng số liệu sau:

    Thời gian

    \lbrack 33;\ 35) \lbrack 35;\ 37) \lbrack 37;\ 39) \lbrack 39;\ 41) \lbrack 41;\ 43) \lbrack 43;\ 45)

    Số học sinh

    4

    13

    38

    27

    14

    4

    Phương sai của mẫu số liệu trên là

    Hướng dẫn:

    Giá trị đại diện của mỗi nhóm số liệu là trung bình cộng của hai đầu mút.

    Ta có bảng tần số ghép nhóm theo giá trị đại diện của mỗi nhóm:

    Thời gian

    \lbrack 33;\ 35) \lbrack 35;\ 37) \lbrack 37;\ 39) \lbrack 39;\ 41) \lbrack 41;\ 43) \lbrack 43;\ 45)

    Giá trị đại diện

    34

    36

    38

    40

    42

    44

    Số học sinh

    4

    13

    38

    27

    14

    4

    Thời gian trung bình để 100 học sinh hoàn thành bài kiểm tra là:

    \overline{x} = \frac{4.34 + 13.36 + 38.38
+ 27.40 + 14.42 + 4.44}{100} = 38,92 (phút).

    Phương sai của mẫu số liệu

    S_{x}^{2} = \frac{4.(34 - 38,92)^{2} +
13.(36 - 38,92)^{2}}{100} +
\frac{38.(38 - 38,92)^{2} + 27.(40 - 38,92)^{2}}{100}

    + \frac{14.(42 - 38,92)^{2} + 4.(44 -
38,92)^{2}}{100} = 5,0736

  • Câu 27: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau.

    Tìm phương sai của mẫu số liệu ghép nhóm (làm tròn kết quả đến chữ số thập phân thứ 2)

    Hướng dẫn:

    Ta có

    A table with numbers and a numberDescription automatically generated

    Thời gian trung bình là

    \overline{x} = \frac{1}{20}(10,3 \cdot 3
+ 10,5 \cdot 7 + 10,7 \cdot 8 + 10,9 \cdot 2) = 10,59.

    Phương sai

    s^{2} = \frac{1}{20} \cdot \left(
10,3^{2} \cdot 3 + 10,5^{2} \cdot 7 + 10,7^{2} \cdot 8 + 10,9^{2} \cdot
2 \right) - 10,59^{2} = 0.03.

  • Câu 28: Vận dụng
    Chọn đáp án đúng nhất

    Thống kê lợi nhuận hàng tháng (đơn vị: triệu đồng) trong 20 tháng của hai nhà đầu tư được cho như sau:

    A white paper with black text and numbersDescription automatically generated

    Đáp án nào dưới đây đúng nhất?

    Hướng dẫn:

    Chọn điểm đại diện cho các nhóm số liệu ta tính được các số đặc trưng như sau Lợi nhuận trung bình một tháng của các nhà đầu tư tương ứng là

    \begin{matrix}
{\overline{x}}_{A} = \frac{1}{20}(2 \cdot 15 + \ldots + 2 \cdot 55) = 35
\\
{\overline{x}}_{B} = \frac{1}{20}(4 \cdot 515 + \ldots + 4 \cdot 555) =
535 \\
\end{matrix}

    Độ lệch chuẩn của lợi nhuận hàng tháng của hai nhà đầu tư tương ứng là

    \begin{matrix}
s_{A} = \sqrt{\frac{1}{20}\left( 2 \cdot 15^{2} + \ldots + 2 \cdot
55^{2} \right) - (35)^{2}} \approx 10,95 \\
s_{B} = \sqrt{\frac{1}{20}\left( 4 \cdot 515^{2} + \ldots + 4 \cdot
555^{2} \right) - (535)^{2}} \approx 13,78. \\
\end{matrix}

    Độ lệch chuẩn cho lợi nhuận hàng tháng của nhà đầu tư lớn cao hơn của nhà đầu tư nhỏ. Lợi nhuận trung bình của hai nhà đầu tư khác nhau rất nhiều, do đó ta không nên dùng độ lệch chuẩn để so sánh mức độ rủi ro của hai nhà đầu tư này

  • Câu 29: Thông hiểu
    Xác định độ lệch chuẩn của mẫu số liệu đã cho

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Ta có bảng giá trị như sau:

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    Số trung bình:

    \overline{x} = \frac{3.2,85 + 6.3,15 +
5.3,45 + 4.3,75 + 2.4,05}{20} = 3,39

    Phương sai:

    S^{2} = \frac{3.2,85^{2} + 6.3,15^{2} +
5.3,45^{2} + 4.3,75^{2} + 2.4,05^{2}}{20} - 3,39^{2} =
0,1314

    Độ lệch chuẩn:

    \sigma = \sqrt{0,1314} \approx
0,36

  • Câu 30: Thông hiểu
    Tính độ lệch chuẩn

    Một câu lạc bộ thể dục thể thao đã ghi lại số giờ các thành viên của mình sử dụng cơ sở vật chất của câu lạc bộ để tập luyện trong một tháng như sau:

    Thời gian (giờ)

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21) \lbrack 21;25)

    Tần số (Số người)

    10

    14

    31

    2

    5

    23

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Ta có bảng sau:

    Thời gian (giờ)

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21) \lbrack 21;25)

    Giá trị đại diện

    3

    7

    11

    15

    19

    23

    Tần số (Số người)

    10

    14

    31

    2

    5

    23

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{1}{85}.(10.3 + 14.7 + 31.11 +
2.15 + 5.19 + 23.23) \approx 13,21

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{85}.(10.3^{2} + 14.7^{2}
+ 31.11^{2} + 2.15^{2} + 5.19^{2} +
23.23^{2}) - 13,21^{2} \approx 48,43

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{48,43} \approx 6,96

  • Câu 31: Vận dụng
    Chọn kết luận đúng

    Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu AB trong 50 ngày giao dịch liên tiếp.

    A white rectangular box with black numbersDescription automatically generated

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn.

    Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

    Hướng dẫn:

    Ta có bảng thống kê giá đóng cửa theo giá trị đại diện

    A grid of numbers with black textDescription automatically generated

    - Xét mẫu số liệu của cổ phiếu A

    Số trung bình của mẫu số liệu ghép nhóm là: {\overline{x}}_{1} = \frac{8.121 + 9.123 + 12.125
+ 10.127 + 11.129}{50} = 125,28.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{1}^{2} = \frac{1}{50}8.121^{2} +
9.123^{2} + 12.125^{2} + 10.127^{2}

    + 11.129^{2}) - 125,28^{2} =
7,5216.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{1} = \sqrt{7,5216}

    - Xét mẫu số liệu của cổ phiếu B

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{2} = \frac{1}{50}(16.121
+ 4.123 + 3.125 + 6.127 + 21.129) = 125,48.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{2}^{2} = \frac{1}{50}(16.121^{2} +
4.123^{2} + 3.125^{2} + 6.127^{2}

    + 21.129^{2}) - 125,48^{2} =
12,4096.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{2} = \sqrt{12,4096}.

    Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cồ phiếu B.

  • Câu 32: Thông hiểu
    Tìm giá trị gần nhất với kết quả

    Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau

    A white rectangular with black numbersDescription automatically generated

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Xét mẫu số liệu ghép nhóm cho bởi bảng sau

    A white grid with black numbersDescription automatically generated

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{1}{18}.(22,5.6 +
27,5.6 + 32,5.4 + 37,5.1 + 42,5.1) = \frac{85}{3}.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{18}(6.22,5^{2} +
6.27,5^{2} + 4.32,5^{2}+ 1.37,5^{2} + 1.42,5^{2}) - \left(
\frac{85}{3} \right)^{2} = 31,25.

    Vậy phương sai của mẫu số liệu ghép nhóm gần nhất với 31,44.

  • Câu 33: Nhận biết
    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm với bộ ba tứ phân vị lần lượt là Q_{1} = 11,5; Q_{2} = 14,5; Q_{3} = 21,3. Khi đó khoảng tứ phân vị của mẫu số liệu trên là

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1} = 21,3 - 11,5 =
9,8.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (9%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (21%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm