Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12: Tương giao đồ thị thông qua đồ thị, bảng biến thiên

VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Bài toán tương giao đồ thị hàm số. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 27 câu
  • Điểm số bài kiểm tra: 28 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Số nghiệm thực của phương trình 4f(x) - 7
= 0 là:

    Hướng dẫn:

    Ta có: 4f(x) - 7 = 0 \Leftrightarrow f(x)
= \frac{7}{4}.

    Do đường thẳng y = \frac{7}{4} cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt nên suy ra phương trình đã cho có 3 nghiệm.

  • Câu 2: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x) = \frac{1}{2}

    Hướng dẫn:

    Số nghiệm thực của phương trình f(x) =
\frac{1}{2} chính là số giao điểm của đồ thị hàm số f(x) với đường thẳng y = \frac{1}{2}

    Dựa vào hình trên ta thấy đồ thị hàm số f(x) với đường thẳng y = \frac{1}{2} có 2 giao điểm.

    Vậy phương trình f(x) =
\frac{1}{2} có hai nghiệm.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y=f(x) có bảng biến thiên như hình bên.

    Số nghiệm của phương trình f(x) - 3 =
0

    Hướng dẫn:

    Ta có: f(x) - 3 = 0 \Leftrightarrow f(x)
= 3, theo bảng biến thiên ta có phương trình có 3 nghiệm.

  • Câu 4: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 5: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình bên dưới.

    Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m, phương trình 2f(x) = m có 4 nghiệm thực phân biệt?

    Hướng dẫn:

    Ta có 2f(x) = m \Leftrightarrow f(x) =
\frac{m}{2}.

    Dựa vào đồ thị, phương trình trên có 4 nghiệm thực phân biệt khi và chỉ khi

    - 4 < \frac{m}{2} < 5
\Leftrightarrow - 8 < m < 10.

    Suy ra, các giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là:

    - 7\ ;\  - 6\ ;\ \ldots\ ;\  - 1\ ;\ 0\ ;\ 1\ ;\
\ldots\ ;\ 9.

    Có tất cả 17 số m thỏa mãn.

  • Câu 6: Nhận biết
    Tìm số nghiệm của phương trình

    Cho hàm số f\left( x \right) = a{x^3} + b{x^2} + cx + d;\left( {a;b;c;d \in \mathbb{R}} \right). Đồ thị của hàm số y=f(x) như hình vẽ bên. Số nghiệm thực của phương trình 3f(x)+4=0 là

    Hướng dẫn:

    Ta có: 3f(x) + 4 = 0 \Leftrightarrow f\left( x ight) =  - \frac{4}{3}{\text{   }}\left( * ight)

    (*) là phương trình hoành độ giao điểm của đồ thị hàm số y=f(x) và đường thẳng y =  - \frac{4}{3}.

    Dựa vào đồ thị hàm số, ta thấy (*) có 3 nghiệm.

  • Câu 7: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số bậc bốn \mathbf{y = f}\left(
\mathbf{x} \right) có đồ thị là đường cong trong hình bên.

    Số nghiệm của phương trình f(x)=-\dfrac{1}{2} là

    Hướng dẫn:

    Số nghiệm của phương trình f\left( x ight) =  - \frac{1}{2} bằng số giao điểm của đồ thị hàm số y = f\left( x ight) và đường thẳng y =  - \frac{1}{2} .

    Dựa vào đồ thị ta thấy: đồ thị hàm số y = f\left( x ight) và đường thẳng y =  - \frac{1}{2} cắt nhau tại 2 điểm.

    Nên phương trình f\left( x ight) =  - \frac{1}{2} có 2 nghiệm.

  • Câu 8: Nhận biết
    Xác định nghiệm của phương trình

    Cho hàm số y=f(x) liên tục trên \lbrack - 2;2brack và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 3f(x)-4=0 trên đoạn \lbrack - 2;2brack

    Hướng dẫn:

    Ta có 3f(x) - 4 = 0 \Leftrightarrow f\left( x ight) = \frac{4}{3}.

    Dựa vào đồ thị, ta thấy đường thẳng y = \frac{4}{3} cắt y=f(x) tại 3 điểm phân biệt nên phương trình đã cho có 3 nghiệm phân biệt.

  • Câu 9: Thông hiểu
    Tìm số nghiệm của phương trình

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2\rbrack và có đồ thị là đường cong như hình vẽ bên. Tìm số nghiệm của phương trình \left| f(x) \right| = 1 trên đoạn \lbrack - 2;2\rbrack.

    Hướng dẫn:

    Ta có số nghiệm của phương trình \left|
f(x) ight| = 1 là số giao điểm của đồ thị hàm số y = \left| f(x) ight| với đường thẳng y = 1 .

    Từ hình vẽ ta thấy đường thẳng y =
1 cắt đồ thị hàm số y = \left| f(x)
ight| tại 6 điểm. Vậy số nghiệm của phương trình \left| f(x) ight| = 1 là 6.

  • Câu 10: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình f(x) = - \frac{3}{2}

    Hướng dẫn:

    Từ đồ thị ta f(x) = -
\frac{3}{2}4 nghiệm phân biệt

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) là hàm phân thức bậc nhất chia bậc nhất và có đồ thị như hình Svẽ bên. Số nghiệm của phương trình f(x) = 2024

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
2024 bằng số giao điểm của đồ thị hàm số y = f(x)với đường thẳng y = 2024.

    Dựa vào đồ thị hàm số y = f(x) suy ra số nghiệm của phương trình là 1.

  • Câu 12: Thông hiểu
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x) = \frac{1}{2}

    Hướng dẫn:

    Số nghiệm thực của phương trình f(x) =
\frac{1}{2} bằng số giao điểm của đường thẳng y = \frac{1}{2} và có đồ thị hàm số y = f(x).

    Ta thấy đường thẳng y =
\frac{1}{2} cắt đồ thị hàm số tại 4 điểm nên phương trình f(x) = \frac{1}{2}4 nghiệm.

  • Câu 13: Thông hiểu
    Tìm m để phương trình có ba nghiệm thực

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x) = m có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Phương trình có ba nghiệm thực phân biệt \Leftrightarrow - 3 < m < 1.

    Do m nguyên nên m \in \left\{ - 2; - 1;0 ight\}

    Vậy có 3 giá trị nguyên m

  • Câu 14: Nhận biết
    Xác định số nghiệm thực của phương trình

    Cho hàm số f(x) = ax^{4} + bx^{2} +
c có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Đường thẳng (d) có phương trình y = 1 cắt đồ thị hàm số y = f(x) tại 2 điểm phân biệt.

    Suy ra phương trình f(x) = 1 có 2 nghiệm thực phân biệt.

  • Câu 15: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = (x + 1)\left( x^{2} - 2
\right) có đồ thị (C) . Mệnh đề nào dưới đây là đúng?

    Hướng dẫn:

    Xét phương trình (x + 1)\left( x^{2} - 2
ight) = 0\ \ \ \ \ \ \ \ (1)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = \sqrt{2} \\
x = - \sqrt{2} \\
\end{matrix} ight.

    Số giao điểm của đồ thị(C)với trục hoành bằng số nghiệm của phương trình.

    Vậy(C)cắt trục hoành tại ba điểm.

  • Câu 16: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;4brack và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 3f(x) - 5 = 0 trên đoạn \lbrack - 2;4brack

    Hướng dẫn:

    Ta có 3f(x) - 5 = 0 \Leftrightarrow f(x)= \frac{5}{3}.

    Dựa vào đồ thị ta thấy đường thẳng y =
\frac{5}{3} cắt đồ thị hàm số y =
f(x) tại ba điểm phân biệt thuộc đoạn \lbrack - 2;4brack.

    Do đó phương trình 3f(x) - 5 = 0 có ba nghiệm thực.

  • Câu 17: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số y = \frac{ax + b}{cx +
d} có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

    Hướng dẫn:

    Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là ( - 1\ ;\ 0).

  • Câu 18: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x) = - 1 là:

    Hướng dẫn:

    Số nghiệm thực của phương trình f(x) = -
1 chính là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = - 1.

    Từ hình vẽ suy ra 3 nghiệm.

  • Câu 19: Nhận biết
    Tìm tọa độ giao điểm

    Cho hàm số y = \frac{ax + b}{cx +
d} có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là

    Hướng dẫn:

    Từ đồ thị ta thấy đồ thị hàm số cắt trục tung tại điểm có tọa độ (0\ ;\  - 2).

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Cho hàm số bậc bốn y = f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình f(x) = 1

    Hướng dẫn:

    Ta có đường thẳng y = 1 cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt.

    Suy ra phương trình f(x) = 1 có 3 nghiệm phân biệt.

  • Câu 21: Thông hiểu
    Chọn mệnh đề đúng

    Đường cong ở hình bên là đồ thị của hàm số y = ax^{4} + bx^{2} + c, với a;b;c là các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào hình dáng của đồ thị hàm số y =
ax^{4} + bx^{2} + c ta thấy đây là đồ thị của hàm số bậc bốn trùng phương có 3 điểm cực trị nên phương trình y' = 0 có ba nghiệm thực phân biệt.

  • Câu 22: Nhận biết
    Tìm tọa độ giao điểm

    Cho hàm số y = \frac{ax + b}{cx +
d} có đồ thị là đường cong trong hình dưới đây. Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là

    Hướng dẫn:

    Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là (0;2).

  • Câu 23: Thông hiểu
    Xác định số nghiệm của phương trình

    Cho hàm số y=f(x) có bảng biến thiên như sau:

    Số nghiệm thực của phương trình 2f(x)-3=0 là

    Hướng dẫn:

    Ta có 2f(x) - 3 = 0 \Leftrightarrow f\left( x ight) = \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số y=f(x) và đường thẳng y = \frac{3}{2}.

    Dựa vào bảng biến thiên của f(x) ta có số giao điểm của đồ thị

  • Câu 24: Thông hiểu
    Tìm số nghiệm thực của phương trình

    Cho hàm số f(x) có bảng biến thiên như sau:

    Số nghiệm thực của phương trình 2f(x) + 3
= 0

    Hướng dẫn:

    Ta có: 2f(x) + 3 = 0 \Leftrightarrow f(x)
= - \frac{3}{2} có đồ thị hàm số là đường thẳng song song với trục hoành.

    Khi đó ta kí hiệu bảng biến thiên như sau

    Nhìn bảng biến thiên ta thấy phương trình này có 3 nghiệm.

  • Câu 25: Nhận biết
    Chọn đáp án đúng

    Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x)=1 là

    Hướng dẫn:

    Ta thấy đường thẳng y=1 cắt đồ thị hàm số y=f(x) tại 3 điểm phân biệt nên phương trình f(x)=1 có 3 nghiệm.

  • Câu 26: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x)có đồ thị như hình vẽ bên. Số nghiệm của phương trình f(x)
+ 1 = 0

    Hướng dẫn:

    Xét phương trình:f(x) + 1 =
0

    \Leftrightarrow f(x) = - 1.

    Số nghiệm của phương trình f(x) = -
1bằng số giao điểm của đồ thị hàm số y = f(x)với đường thẳng y = - 1.

    Dựa vào đồ thị hàm số y = f(x)suy ra số nghiệm của phương trình là 1.

  • Câu 27: Nhận biết
    Tìm số nghiệm thực của phương trình

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ bên.

    Số nghiệm thực của phương trình f(x) =
2 là:

    Hướng dẫn:

    Ta có số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) với đường thẳng y = 2.

    Dựa vào đồ thị ta có phương trình có ba nghiệm phân biệt.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (56%):
    2/3
  • Thông hiểu (44%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm