Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Vị trí tương đối giữa hai đường thẳng Toán 12 có đáp án

Bài Tập Toán 12: Vị Trí Tương Đối Giữa Hai Đường Thẳng Trong Không Gian

Trong chương trình Toán 12, chuyên đề vị trí tương đối giữa hai đường thẳng trong không gian là một nội dung quan trọng thuộc phần hình học không gian. Việc luyện tập các dạng bài tập vị trí tương đối giữa hai đường thẳng giúp học sinh nắm vững lý thuyết, thành thạo kỹ năng nhận biết song song, cắt nhau, chéo nhau giữa các đường thẳng. Bài viết dưới đây tổng hợp các bài tập từ cơ bản đến nâng cao có đáp án chi tiết, giúp các em ôn tập hiệu quả cho kiểm tra và kỳ thi THPT Quốc gia.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 22 câu
  • Điểm số bài kiểm tra: 22 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn khẳng định đúng

    Cho hai đường thẳng (d_{1}) :\left\{ \begin{matrix}
x - y + z - 5 = 0 \\
x - 3y + 6 = 0 \\
\end{matrix} \right.(d_{2}):\left\{ \begin{matrix}
2y + z - 5 = 0 \\
4x - 2y + 5z - 4 = 0 \\
\end{matrix} \right.

    Tìm câu đúng?

    Hướng dẫn:

    Chuyển đường thẳng (d_{1})(d_{2}) về dạng tham số:

    (d_{1}):\left\{ \begin{matrix}
x = - 6 + 3t \\
y = t \\
z = 11 - 2t \\
\end{matrix} \right.\  \Rightarrow (d_{1}) có vectơ chỉ phương \overrightarrow{a} = (3,1, - 2) và qua A( - 6,0,11) .

    (d_{2}):\left\{ \begin{matrix}
x = \frac{15}{4} - 3t' \\
y = 3 - t' \\
z = - 1 + 2t' \\
\end{matrix} \right.\  \Rightarrow \left( d_{2} \right)có vectơ chỉ phương \overrightarrow{b} =
(\frac{15}{4},3, - 1)

    \overrightarrow{a} \nearrow \swarrow
\overrightarrow{b} và hệ phương trình \left\{ \begin{matrix}
- 6 + 3t = \frac{15}{4} - 3t' \\
t = 3 - t' \\
11 - 2t = - 1 + 2t' \\
\end{matrix} \right. vô nghiệm.

    \Rightarrow (d_{1}) //(d_{2})

  • Câu 2: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):x = 8t - 1;\ \ y = -
1 - 14t;\ \ z = - 12t(d):x - 2y
+ 3z - 1 = 0;\ \ \ 2x + 2y - z + 4 = 0\ \ \ \left( t\mathbb{\in R}
\right)

    Hướng dẫn:

    (D) qua E( - 1, - 1,0) có vecto chỉ phương \overrightarrow{a} = (8, - 14, - 12)

    Hai pháp vecto của hai mặt phẳng x - 2y +
3z - 1 = 02x + 2y - z + 1 =
0\overrightarrow{n_{1}} = (1, -
2,3);\overrightarrow{n_{2}} = (2,2, - 1)

    Vecto chỉ phương của (d):\overrightarrow{b} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = ( -
4,7,6)

    Ta có: \frac{8}{- 4} = \frac{- 14}{7} =
\frac{- 12}{6} = - 2 và tọa độ E( -1, - 1,0) thỏa man phương trình của (d) \Rightarrow (D) \equiv (d)

  • Câu 3: Thông hiểu
    Chọn đáp án thích hợp

    Cho hai đường thẳng trong không gian Oxyz:(D):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}},(d):\ \frac{x\  - \ x_{2}}{b_{1}} = \frac{y\  - \
y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}}. Với a_{1},\ \ a_{2},\ \ a_{3},\ \ b_{1},\ \ b_{2},\ \
b_{3} \neq \ 0. Gọi \overrightarrow{a} = \left( \ a_{1},\ \ a_{2},\ \
a_{3} \right);\ \ \overrightarrow{b} = \left( \ b_{1},\ \ b_{2},\ \
b_{3} \right)\overrightarrow{AB} = \left( \ x_{2}\  - \ x_{1},\
\ y_{2}\  - \ y_{1},\ \ z_{2}\  - \ z_{1} \right). (D) và (d) cắt nhau khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
= 0 \Rightarrow (D)(d) cùng nằm trong một mặt phẳng a_{1}:a_{2}:a_{3} \neq b_{1}:b_{2}:b_{3}
\Leftrightarrow \frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}} \neq
\frac{a_{3}}{b_{3}} \Rightarrow (D)(d) cắt nhau.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Viết phương trình tổng quát của đường thẳng (D) qua A(4,2,1) và song song với đường thẳng (d):x + 2y - z = 0;x - 3y + z - 6 =
0.

    Hướng dẫn:

    \overrightarrow{n_{1}} = (1,2, - 1);\ \
\overrightarrow{n_{2}} = (1, - 3,1)

    Một vecto chỉ phương của (d):\overrightarrow{a} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = -
(1,2,5)

    Phương trình chính tắc của (D):x - 4 =
\frac{y - 2}{2} = \frac{z - 1}{5}

    \Rightarrow (D)\left\{ \begin{matrix}
2x - y - 6 = 0 \\
5x - z - 19 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
2x - y - 6 = 0 \\
5y - 2z - 8 = 0 \\
\end{matrix} \right.

  • Câu 5: Thông hiểu
    Tìm phương trình tổng quát của mặt phẳng

    Viết phương trình tổng quát của mặt phẳng (P) song song và cách đều hai đường thẳng (D):x = 2 + 3t;\ \ \ y = 1 -
2t;\ \ \ z = 2t - 1(d):x = t -
4;\ \ \ y = 3 - t;\ \ \ z = 3t + 1\ \ \ \left( t\mathbb{\in R}
\right)

    Hướng dẫn:

    (D) qua A(2,1, - 1) và vecto chỉ phương \overrightarrow{a} = (3, - 2,2)

    (d) qua B( - 4,3,1) và vecto chỉ phương \overrightarrow{b} = (1, - 1,3)

    Pháp vecto của (P):\overrightarrow{n} =
\left\lbrack \overrightarrow{a},\overrightarrow{b} \right\rbrack = -
(4,7,1)

    (P) qua trung điểm MN( - 1,2,0) của đoạn AB.

    \Rightarrow (P):4(x + 1) + 7(y - 2) + (z
- 0).1 = 0 \Leftrightarrow 4x + 7y
+ z - 10 = 0

  • Câu 6: Thông hiểu
    Định phương trình tổng quát của mặt phẳng

    Viết phương trình tổng quát của mặt phẳng (P) song song và cách đều hai đường thẳng (D):x = 2t - 1;\ \ \ y = t +
2;\ \ \ z = 1 - 3t(d):x - y - 1
= 0;\ \ \ z + 2 = 0

    Hướng dẫn:

    (D) qua M( - 1,2,1) và có vecto chỉ phương \overrightarrow{a} = (2,1, - 3)

    Cho y = t \Rightarrow x = t + 1;z = - 2
\Rightarrow (d):x = t + 1;y = t;z = - 2

    (d) qua N(1,0, - 2) và có vecto chỉ phương \overrightarrow{b} = (1,1,0)

    Pháp vecto của (P):\overrightarrow{n} =
\left\lbrack \overrightarrow{a},\overrightarrow{b} \right\rbrack = (3, -
3,1)

    (P) qua trung điểm E\left( 0,1, - \frac{1}{2} \right) của đoạn MN.

    \Rightarrow (P):\ 3(x - 0) - 3(y - 1) +
1\left( z + \frac{1}{2} \right) = 0 \Leftrightarrow 6x - 6y + 2z + 5 =
0

  • Câu 7: Thông hiểu
    Tìm tọa độ điểm B

    Hai đường thẳng (d_{1}):\frac{x - 1}{4} =
\frac{y + 1}{2} = \frac{z - 2}{3}(d_{2}):\left\{
\begin{matrix}
4x5y - 9 = 0 \\
3x - 5z + 7 = 0 \\
\end{matrix} \right. cắt nhau tại B . Tọa độ của B là:

    Hướng dẫn:

    Viết phương trình (d_{2})thành dạng tham số:

    \left\{ \begin{matrix}
x = 1 + 4t \\
y = - 1 + 2t \\
z = 2 + 3t \\
\end{matrix} \right.\ (t \in R)

    Thế x,y,z theo t vào phương trình (d_{2}) được t = 0 .

    \Rightarrow (d_{1}) cắt (d_{2}) tại B(1, - 1,2).

  • Câu 8: Thông hiểu
    Vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):\frac{x - 1}{2} = y +
3 = \frac{z - 2}{3};\ \ \ \ \ (d):\frac{x + 2}{3} = \frac{y - 1}{2} =
\frac{z + 4}{4}.

    Hướng dẫn:

    A(1, - 3,2) \in (D)(D) có vecto chỉ phương \overrightarrow{a} = (2,1,3)

    B(-2,1,-4) \in (d)(d) có vecto chỉ phương \overrightarrow{b} = (3,2,4)

    \overrightarrow{AB} = ( - 3,4, - 6)\Rightarrow \left\lbrack \overrightarrow{a},\overrightarrow{b}
\right\rbrack.\overrightarrow{AB} = ( - 2,1,1).( - 3,4, - 6) = 4 \neq
0

    \Rightarrow (D)(d) chéo nhau.

  • Câu 9: Thông hiểu
    Viết phương trình tham số của đườngthẳng

    Viết phương trình tham số của đường thẳng (D) qua F(2,3,1) và song song với đường thẳng: (d)\left\{ \begin{matrix}
2x - y + 2z - 7 = 0 \\
x + 3y - 2z + 3 = 0 \\
\end{matrix} \right.

    Hướng dẫn:

    Hai pháp vectơ của hai mặt phẳng (P):2x -
y + 2z - 7 = 0(Q):x + 3y - 2z +
3 = 0\overrightarrow{n_{1}} =
(2, - 1,2);\overrightarrow{n_{2}} = (1,3, - 2)

    (D)//(d) nên vectơ chỉ phương của (D):\overrightarrow{a} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = ( - 4,6,7)
= - (4, - 6, - 7)

    \Rightarrow (D)\left\{ \begin{matrix}
x = 2 - 4t \\
y = 3 + 6t \\
z = 1 + 7t \\
\end{matrix} \right.\ ;t\mathbb{\in R} hay  \left\{ \begin{matrix}
x = 2 + 4m \\
y = 3 - 6m \\
z = 1 - 7m \\
\end{matrix} \right.\ \ \ ;m\mathbb{\in R} 

  • Câu 10: Thông hiểu
    Xác định công thức đúng

    Cho hai đường thẳng chéo nhau \left(
D_{1} \right):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}}\left( D_{2} \right):\ \frac{x\  - \ x_{2}}{b_{1}}
= \frac{y\  - \ y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}} \left( a_{1},a_{2},a_{3},b_{1},b_{2},b_{3}
\neq \ \ 0 \right); với \overrightarrow{a} = \left( a_{1},a_{2},a_{3}
\right); \overrightarrow{b} =
\left( b_{1},b_{2},b_{3} \right)\overrightarrow{AB} = \left( x_{2} - x_{1},y_{2} -
y_{1},z_{2} - z_{1} \right).Khoảng cách hay đoạn vuông góc chung giữa \left( D_{1} \right)\left( D_{2} \right) tính bởi công thức nào sau đây?

    Hướng dẫn:

    Công thức đúng cần tìm là: d\left(
D_{1},D_{2} \right) = \frac{\left| \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
\right|}{\left| \left\lbrack \overrightarrow{a},\overrightarrow{b}
\right\rbrack \right|}

  • Câu 11: Thông hiểu
    Viết phương trình tổng quát của đường thẳng

    Viết phương trình tổng quát của đường thẳng (D) qua A(2,
- 2,1) và song song với đường thẳng (d):x = 2 - 4m;y = 3 + 2m;z = m - 5\left(
m\mathbb{\in R} \right).

    Hướng dẫn:

    Ta có:

    (D)//(d) \Rightarrow Một vecto chỉ phương của (D):\overrightarrow{a} = ( -
4,2,1)

    Phương trình chính tắc của (D):\frac{x -
2}{- 4} = \frac{y + 2}{2} = z - 1

    \Rightarrow \left\{ \begin{matrix}
x + 2y + 2 = 0 \\
x + 4z - 6 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
x + 2y + 2 = 0 \\
y - 2z + 4 = 0 \\
\end{matrix} \right.

  • Câu 12: Thông hiểu
    Xác định đường thẳng thích hợp

    Đường thẳng (D):x - 3y + 2z + 7 = 0;x- 2y + z - 5 = 0 vuông góc với đường thẳng nào sau đây?

    Hướng dẫn:

    Hai pháp vec-tơ của hai mặt phẳng x - 3y
+ 2z + 7 = 0;x - 2y + z - 5 = 0\overrightarrow{n_{1}} = (1, -
3,2);\overrightarrow{n_{2}} = (1, - 2,1) \Rightarrow \overrightarrow{a}
= \left\lbrack \overrightarrow{n_{1}},\overrightarrow{n_{2}}
\right\rbrack = (1,1,1)

    \left( d_{1} \right) có vec-tơ chỉ phương \overrightarrow{b} = (3, -
4,1)

    \Rightarrow
\overrightarrow{a}.\overrightarrow{b} = 3 - 4 + 1 = 0 \Rightarrow
(D)\bot\left( d_{1} \right)

    \left( d_{2} \right) có vec-tơ chỉ phương \overrightarrow{c} = ( - 2,1, -
2) \Rightarrow \overrightarrow{a}.\overrightarrow{c} = - 3 \neq
0

    \left( d_{3} \right) có vec-tơ chỉ phương \overrightarrow{d} = (1,2, - 3)
\Rightarrow \overrightarrow{a}.\overrightarrow{d} = 0 \Rightarrow
(D)\bot\left( d_{3} \right)

  • Câu 13: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Cho hai đường thẳng: \left( d_{1}
\right):\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z - 9}{- 1}\left( d_{2} \right):\frac{x -
3}{- 1} = \frac{y - 1}{2} = \frac{z - 1}{3} .

    Chọn câu trả lời đúng?

    Hướng dẫn:

    Phương trình \left( d_{1} \right) \in
\left( d_{1} \right) cho A(7,3,7) và vectơ chỉ phương của \left( d_{1} \right) :

    \overrightarrow{a} = (1,2, - 1) .

    Phương trình \left( d_{2}
\right) cho B(3,1,1) \in \left(
d_{2} \right) và vectơ chỉ phương của \left( d_{2} \right) :

    \overrightarrow{b} = ( - 7,2,3) .

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack = (8,4,16) ; \overrightarrow{AB} = ( - 4, - 2, -
8) .

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
= - 32 - 8 - 128 \neq 0 \Leftrightarrow \left( d_{1} \right)\left( d_{2} \right) chéo nhau .

  • Câu 14: Thông hiểu
    Chọn phương án đúng

    Cho hai đường thẳng trong không gian Oxyz:(D):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}},(d):\ \frac{x\  - \ x_{2}}{b_{1}} = \frac{y\  - \
y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}}. Với a_{1},\ \ a_{2},\ \ a_{3},\ \ b_{1},\ \ b_{2},\ \
b_{3} \neq \ 0. Gọi \overrightarrow{a} = \left( \ a_{1},\ \ a_{2},\ \
a_{3} \right);\ \ \overrightarrow{b} = \left( \ b_{1},\ \ b_{2},\ \
b_{3} \right)\overrightarrow{AB} = \left( \ x_{2}\  - \ x_{1},\
\ y_{2}\  - \ y_{1},\ \ z_{2}\  - \ z_{1} \right). (D) và (d) song song khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
= 0 \Rightarrow (D)(d) cùng nằm trong một mặt phẳnga_{1}:a_{2}:a_{3} = b_{1}:b_{2}:b_{3}
\Leftrightarrow \frac{a_{1}}{b_{1}} = \frac{a_{2}}{b_{2}} =
\frac{a_{3}}{b_{3}} \Rightarrow (D)(d) cùng phương A\left( x_{1},y_{1},z_{1} \right) \in (D)A \notin (d) \Rightarrow (D)(d) song song.

  • Câu 15: Thông hiểu
    Tìm tọa độ điểm M

    Hai đường thẳng (D):\left\{
\begin{matrix}
x = 2 + 4t \\
y = - 3m - t \\
z = 2t - 1 \\
\end{matrix} \right.(d):\left\{ \begin{matrix}
x = 4 - 2m \\
y = m + 2 \\
z = - m \\
\end{matrix} \right. cắt nhau tại M có tọa độ \left( t,m\mathbb{\in R} \right).

    Hướng dẫn:

    Ta có:

    (D) cắt (d) tại M
\Leftrightarrow \left\{ \begin{matrix}
2 + 4t = 4 - 2m \\
- 3 - t = m + 2 \\
2t - 1 = - m \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
2t + m = 1 \\
t + m = - 5 \\
\end{matrix} \right.\  \Leftrightarrow t = 6;m = - 11

    Vậy M(26, - 9,11)

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Cho hai đường thẳng trong không gian Oxyz:(D):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}},(d):\ \frac{x\  - \ x_{2}}{b_{1}} = \frac{y\  - \
y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}}. Với a_{1},\ \ a_{2},\ \ a_{3},\ \ b_{1},\ \ b_{2},\ \
b_{3} \neq \ 0. Gọi \overrightarrow{a} = \left( \ a_{1},\ \ a_{2},\ \
a_{3} \right);\ \ \overrightarrow{b} = \left( \ b_{1},\ \ b_{2},\ \
b_{3} \right)\overrightarrow{AB} = \left( \ x_{2}\  - \ x_{1},\
\ y_{2}\  - \ y_{1},\ \ z_{2}\  - \ z_{1} \right). (D) và (d) chéo nhau khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
\neq 0 \Rightarrow (D)(d) chéo nhau.

  • Câu 17: Thông hiểu
    Xác định vị trí tương đối hai đường thẳng

    Hai dường thẳng (D):x = 2t + 3;y = t +
1;z = 3t - 2;(d):x = 4t - 1;y = 2t - 5;z = 6t + 1;t\mathbb{\in
R}

    Hướng dẫn:

    Ta có: (D) qua M(3,1, - 2) và có vecto chỉ phương \overrightarrow{a} = (2,1,3)

    (d) qua M( - 1, - 5,1) và có vecto chỉ phương \overrightarrow{b} = (4,2,6) =
2(2,1,3)

    \Rightarrow \overrightarrow{a}\overrightarrow{b} cùng phương \Rightarrow (D)(d) cùng phương.

    \overrightarrow{MN} = ( - 4, -
6,3) không cùng phương với \overrightarrow{a} \Rightarrow
(D)//(d)

  • Câu 18: Thông hiểu
    Xác định phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng (D) qua I(1, - 3,2) và song song với đường thẳng (d):x = 3 + 4t;y = 2 - 2t;z = 3t - 1\left(
t\mathbb{\in R} \right)

    Hướng dẫn:

    Ta có:

    (D)//(d) nên một vectơ chỉ phương của (D):\overrightarrow{a} =
\overrightarrow{e_{1}} = (1,0,0)\ \ hay\ \ \overrightarrow{a} = - ( -
1,0,0)

    \left\{ \begin{matrix}
x = 1+4t \\
y = -3-2t \\
z = 2+3t \\
\end{matrix} \right.\ \ \ ;t\mathbb{\in R} hay (D)\left\{ \begin{matrix}
x = 1 - 4m \\
y = 2m - 3 \\
z = 2 - 3m \\
\end{matrix} \right.\ ;m\mathbb{\in R}

  • Câu 19: Thông hiểu
    Tìm tọa độ điểm C

    Hai đương thẳng (d_{1}):\left\{
\begin{matrix}
x = 2t - 3 \\
y = 3t - 2 \\
z = 4t + 6 \\
\end{matrix} \right.(d_{2}) : \left\{ \begin{matrix}
x = 5 + t' \\
y = - 1 - 4t' \\
z = 20 + t' \\
\end{matrix} \right. cắt nhau tại C.

    Tọa độ điểm C là:

    Hướng dẫn:

    Hệ phương trình \left\{ \begin{matrix}
2t - 3 = 5 + t' \\
3t - 2 = - 1 - 4t' \\
4t + 6 = 20 + t' \\
\end{matrix} \right.có nghiệm t =
3,t' = - 2 .

    Từ đó có C(3,7,18) .

  • Câu 20: Thông hiểu
    Định phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng (D) qua B(5,2, - 3) và song song với đường thẳng (d):\frac{x + 3}{2} = \frac{y - 1}{3} =
\frac{z + 2}{4}

    Hướng dẫn:

    Ta có:

    (D)//(d) nên một vectơ chỉ phương của (D):\overrightarrow{a} = (2,3,4)
= - ( - 2, - 3, - 4)

    \Rightarrow (D)\left\{ \begin{matrix}
x = 5 - 2t \\
y = 2 - 3t \\
z = - 3 - 4t \\
\end{matrix} \right.\ \ \ ;t\mathbb{\in R}

  • Câu 21: Thông hiểu
    Chọn phương án thích hợp

    Viết phương trình tham số của đường thẳng (D) qua E(2,
- 1, - 3) và vuông góc với hai đường thẳng \left( D_{1} \right):\frac{x - 1}{3} = y - 1 =
\frac{z + 2}{2};\ \ \ \ \ \ \ \ \left( D_{2} \right):\frac{x}{2} =
\frac{y + 3}{4} = 2 - z.

    Hướng dẫn:

    Hai vectơ chỉ phương của \left( D_{1}
\right)\left( D_{2}
\right):\overrightarrow{a} = (3,1,2);\overrightarrow{b} = (2,4, -
1)

    Một vectơ chỉ phương của (D):\overrightarrow{c} = \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack = ( -
9,7,10)

    \Rightarrow (D):x = 2 - 9t;y = 7t - 1;z =
10t - 1;t\mathbb{\in R}

  • Câu 22: Thông hiểu
    Tìm tọa độ giao điểm hai đường thẳng

    Hai đường thẳng (d_{1}): \left\{ \begin{matrix}
x - y - z - 7 = 0 \\
3x - 4y - 11 = 0 \\
\end{matrix} \right.(d_{2}) : \left\{ \begin{matrix}
x + 2y - z + 1 = 0 \\
x + y + 1 = 0 \\
\end{matrix} \right. cắt nhau tại điểm. Tọa độ của A là:

    Hướng dẫn:

    Từ phương trình của (d_{1}) ,tính x, y theo z được \left\{
\begin{matrix}
x = 4z + 17 \\
y = 3z + 10 \\
\end{matrix} \right. .

    Thế vào phương trình của (d_{2}) , được z = - 4, từ đó x = 1,y = - 2 .

    Khi đó: A(1, -2, - 4).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (100%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Thi THPT Quốc gia môn Toán

Xem thêm