Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12 Tìm nguyên hàm của hàm số

Tập luyện và rèn luyện kỹ năng giải nguyên hàm hiệu quả thông qua tài liệu bài tập trắc nghiệm Toán học 12 kèm theo đáp án chi tiết nguyên ​kèm theo phản hồi chi tiết. Tài liệu giúp học sinh nắm chắc cách tính nguyên hàm của hàm số, chuẩn bị tốt cho kỳ thi THPT Quốc gia.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 34 câu
  • Điểm số bài kiểm tra: 34 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = (2x -
3)^{2} .

    Hướng dẫn:

    Ta có \int_{}^{}{f(x)dx =
\frac{1}{3.2}(2x - 3)^{3} + C}

  • Câu 2: Vận dụng
    Tính nguyên hàm của hàm số

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{x^{2} + x - 1}{\sqrt{x^{2} -
1}}.e^{x}

    Hướng dẫn:

    Ta có

    f(x) = \frac{x^{2} + x - 1}{\sqrt{x^{2} -
1}}.e^{x} = \frac{\left( x^{2} - 1 ight) + x}{\sqrt{x^{2} -
1}}.e^{x}

    = \left\lbrack \frac{x}{\sqrt{x^{2} - 1}}
+ \sqrt{x^{2} - 1} ightbrack e^{x}= \left\lbrack \left( \sqrt{x^{2}
- 1} ight)' + \sqrt{x^{2} - 1} ightbrack e^{x}

    \Rightarrow F(x) = \sqrt{x^{2} - 1}.e^{x}
+ C

  • Câu 3: Thông hiểu
    Tính giá trị của biểu thức

    Biết F(x) là nguyên hàm của f(x) = 4^{x}F(1) = \dfrac{1}{\ln2}. Khi đó giá trị F(2) bằng:

    Hướng dẫn:

    Ta có \int_{}^{}{4^{x}dx =
\frac{1}{\ln4}.4^{x} + C = F(x)}

    F(1) = \frac{1}{\ln2} \Leftrightarrow
\frac{4}{\ln4} + C = \frac{1}{\\ln2} \Leftrightarrow C = -
\frac{1}{\ln2}.

    Do đó F(2) = \frac{1}{\ln4}.4^{2} -
\frac{1}{\ln2} = \frac{16}{2\ln2} - \frac{1}{\ln2} =
\frac{7}{\ln2}.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}.

    Hướng dẫn:

    Cách 1: Sử dụng tính chất của nguyên hàm \int_{}^{}{f(x)dx = F(x) \Rightarrow F'(x) =
f(x)}.

    Từ giả thiết, ta có \int_{}^{}{f(x)e^{2x}dx = F(x) \Rightarrow
f(x)e^{2x} = F'(x) = \left\lbrack (x - 1)e^{x} ightbrack' =
xe^{x}}

    \Rightarrow f(x) = \frac{xe^{x}}{\left(
e^{x} ight)^{2}} = \frac{x}{e^{x}}.

    Suy ra f'(x) = \frac{(x)'.e^{x} -
x.\left( e^{x} ight)'}{\left( e^{x} ight)^{2}} = \frac{e^{x} -
x.e^{x}}{\left( e^{x} ight)^{2}} = \frac{e^{x}(1 - x)}{\left( e^{x}
ight)^{2}} = \frac{1 - x}{e^{x}}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx =
\int_{}^{}{\frac{1 - x}{e^{x}}.e^{2x}dx = \int_{}^{}{(1 -
x)e^{x}dx}}}.

    Đặt \left\{ \begin{matrix}
u = 1 - x \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = - dx \\
v = e^{x} \\
\end{matrix} ight..

    \Rightarrow \int_{}^{}{(1 - x)e^{x}dx =
(1 - x)e^{x} + \int_{}^{}{e^{x}dx}}= (1 - x)e^{x} + e^{x} + C = (2 -x)e^{x} + C.

    Cách 2: Sử dụng công thức nguyên hàm từng phần.

    Ta có \int_{}^{}{e^{2x}.f'(x)dx =
e^{2x}.f(x) - \int_{}^{}{f(x).2e^{2x}dx = f(x)e^{2x} -
2\int_{}^{}{f(x)e^{2x}dx}}}

    Từ giả thiết: \int_{}^{}{f(x)e^{2x}dx =
F(x) = (x - 1)e^{x}}

    \Rightarrow f(x)e^{2x} = F'(x) =
\left\lbrack (x - 1)e^{x} ightbrack' = xe^{x}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx = xe^{x}
- 2(x - 1)e^{x} + C = (2 - x)e^{x} + C}.

  • Câu 5: Vận dụng
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x^{2} + 1}}

    Hướng dẫn:

    Ta có:

    \int_{}^{}{\frac{1}{x\sqrt{x^{2} + 1}}dx
= \int_{}^{}{\frac{xdx}{x^{2}\sqrt{x^{2} + 1}} =
\frac{1}{2}\int_{}^{}\frac{d\left( x^{2} + 1 ight)}{x^{2}.\sqrt{x^{2}
+ 1}}}}

    = \int_{}^{}{\frac{d\left( \sqrt{x^{2} +
1} ight)}{x^{2}} = \int_{}^{}{\frac{d\left( \sqrt{x^{2} + 1}
ight)}{\left( \sqrt{x^{2} + 1} ight)^{2} - 1} =
\frac{1}{2}.ln\frac{\sqrt{x^{2} + 1} - 1}{\sqrt{x^{2} + 1} + 1} +
C}}

    (Áp dụng công thức \int_{}^{}{\frac{du}{u^{2} - a^{2}} =
\frac{1}{2a}.ln\left| \frac{u - a}{u + a} ight| + C})

  • Câu 6: Vận dụng
    Xác định hàm số

    Cho F(x) = \ln\left( \ln\left( \ln x
\right) \right). Hỏi F(x) là nguyên hàm của hàm số nào dưới đây?

    Hướng dẫn:

    Để tìm F(x) là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm F(x) từ đó suy ra f(x).

    Ta có

    F'(x) = \left\lbrack \ln\left(
\ln\left( \ln x ight) ight) ightbrack'

    = \frac{1}{\ln\left( \ln x ight)}.\left\lbrack
\ln\left( \ln x ight) ightbrack' = \frac{1}{\ln\left( \ln x ight)}.\frac{1}{\ln
x}\left( \ln x ight)'

    = \frac{1}{\ln\left( \ln x
ight)}.\frac{1}{\ln x}.\frac{1}{x} = \frac{1}{x.\ln x.\ln\left( \ln x
ight)} = f(x).

  • Câu 7: Thông hiểu
    Chọn phương án đúng

    Tìm nguyên hàm I = \int_{}^{}{\frac{1}{4
- x^{2}}dx}

    Hướng dẫn:

    Ta có

    \int_{}^{}{\frac{1}{a^{2} - x^{2}}dx =
\int_{}^{}{\frac{1}{(a + x)(a - x)}dx}}

    = \frac{1}{2a}\int_{}^{}{\left(
\frac{1}{a - x} + \frac{1}{a + x} ight)dx}

    = \frac{1}{2a}.\ln\left| \frac{x + a}{x -
a} ight| + C

    Áp dụng vào bài ta chọn I =
\frac{1}{4}\ln\left| \frac{x + 2}{x - 2} ight| + C.

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = e^{x} -
e^{- x} .

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx = e^{x} + e^{-
x} + C},

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Nguyên hàm của hàm số f(x) = \dfrac{x}{(1+ x)^{5}} là

    Hướng dẫn:

    Đặt u = x + 1 thì u' = 1.

    Khi đó

    \int_{}^{}{\frac{x}{(1 + x)^{5}}dx
= \int_{}^{}{\frac{u - 1}{u^{5}}du}}

    = \int_{}^{}{\left( \frac{1}{u} - \frac{1}{u^{5}}
ight)du = \int_{}^{}{u^{- 4}du - \int_{}^{}{u^{- 5}du}}}

    = - \frac{1}{3}.\frac{1}{u^{3}} +
\frac{1}{4}.\frac{1}{u^{4}} + C.

    Thay u = x + 1 ta được \int_{}^{}{\frac{x}{(x + 1)^{5}}dx = \frac{1}{4(x
+ 1)^{4}} - \frac{1}{3(x + 1)^{3}} + C}

  • Câu 10: Thông hiểu
    Tìm nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{\sqrt{x + 1} + \sqrt{x - 1}} .

    Hướng dẫn:

    Ta có

    \int_{}^{}{\frac{dx}{\sqrt{x + 1} +
\sqrt{x - 1}} }= \int_{}^{}\frac{\left( \sqrt{x + 1} - \sqrt{x - 1}
ight)dx}{\left( \sqrt{x + 1} - \sqrt{x - 1} ight)\left( \sqrt{x + 1}
+ \sqrt{x - 1} ight)}

    =
\frac{1}{2}\int_{}^{}{\left( \sqrt{x + 1} - \sqrt{x - 1} ight)dx }=
\frac{1}{2}.\frac{2}{3}\left\lbrack (x + 1)^{\frac{3}{2}} - (x -
1)^{\frac{3}{2}} ightbrack + C

    = \frac{1}{3}\left\lbrack (x +
1)^{\frac{3}{2}} - (x - 1)^{\frac{3}{2}} ightbrack + C

  • Câu 11: Thông hiểu
    Chọn đáp án thích hợp

    Nguyên hàm của hàm số x.lnx

    Hướng dẫn:

    Ta có \int_{}^{}{x.lnx}dx.

    Đặt \left\{ \begin{matrix}
\ln x = u \Rightarrow \dfrac{1}{x}dx = du \\
dv = xdx \Rightarrow v = \dfrac{x^{2}}{2} \\
\end{matrix} ight.

    Theo phương pháp nguyên hàm từng phần ta có

    \int_{}^{}{x.\ln x}dx = \int_{}^{}{udv = uv
- \int_{}^{}{vdu} = \frac{x^{2}}{2}.\ln x -
\int_{}^{}{\frac{x^{2}}{2}.\frac{1}{x}dx}}

    = \frac{x^{2}.lnx}{2} -
\int_{}^{}{\frac{x}{2}dx = \frac{x^{2}.\ln x}{2} - \frac{x^{2}}{4} +
C}.

  • Câu 12: Thông hiểu
    Chọn phương án thích hợp

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{5x - 2}.

    Hướng dẫn:

    Ta có

    \int_{}^{}{f(x)dx = \int_{}^{}{\frac{dx}{5x - 2}}}

    = \frac{1}{5}\int_{}^{}{\frac{d(5x - 2)}{5x- 2} = \frac{1}{5}\ln|5x - 2| + C}

  • Câu 13: Thông hiểu
    Xác định nguyên hàm

    Tìm nguyên hàm I = \int_{}^{}{(2x -
1)e^{- x}dx}.

    Hướng dẫn:

    Đặt u = 2x - 1 \Rightarrow du =
2dx;

    e^{- x}dx = dv \Rightarrow v = - e^{-
x}

    Lúc này ta có

    \int_{}^{}{(2x - 1)e^{- x}dx = - (2x -
1).e^{- x} + \int_{}^{}{2e^{- x}dx}}

    = - (2x - 1).e^{- x} - 2e^{- x} + C = -
(2x + 1)e^{- x} + C

  • Câu 14: Thông hiểu
    Chọn hàm số thích hợp

    Cho F(x) = \frac{1}{6}.\ln\left| \frac{x -3}{x + 3} \right| + \frac{1}{12}. Hỏi F(x) là nguyên hàm của hàm số nào dưới đây?

    Hướng dẫn:

    Cách 1: Ta có

    F'(x) = \left( \frac{1}{6}.\ln\left|
\frac{x - 3}{x + 3} ight| + \frac{1}{12} ight)'

    = \left( \frac{1}{6}.\ln|x - 3| -
\frac{1}{6}.\ln|x + 3| + \frac{1}{12} ight)'

    = \left( \frac{1}{6}.\ln|x - 3| -
\frac{1}{6}.\ln|x + 3| + \frac{1}{12} ight)'

    = \frac{1}{6}.\frac{1}{x - 3} -
\frac{1}{6}.\frac{1}{x + 3} = \frac{1}{6}.\frac{6}{x^{2} - 3^{2}} =
\frac{1}{x^{2} - 9}

    Cách 2: Thực chất đây là công thức nguyên hàm mà tôi đã giới thiệu ở bảng nguyên hàm phía trên (dòng số 6 trong bảng).

    Áp dụng công thức trên ta có ngay f(x) =
\frac{1}{x^{2} - 9}.

  • Câu 15: Vận dụng
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) = \frac{4x
- 3}{x^{2} - 3x + 2}

    Hướng dẫn:

    Phân tích

    Ta có:

    \frac{4x - 3}{x^{2} - 3x + 2} =\frac{4x - 3}{(x - 2)(x - 1)}

    =
\frac{A}{x - 1} + \frac{B}{x - 2} = \frac{Ax - 2A + Bx - B}{(x - 1)(x -
2)}

    Khi đó (A + B)x - 2A - B = 4x -
3, đồng nhất hệ số thì ta được

    \left\{ \begin{matrix}
A + B = 4 \\
2A + B = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = - 1 \\
B = 5 \\
\end{matrix} ight.

    Giải chi tiết

    Ta có \int_{}^{}{\frac{4x - 3}{x^{2} - 3x
+ 2}dx}= \int_{}^{}{\left( \frac{- 1}{x - 1} + \frac{5}{x - 2} ight)dx}

    = - \ln|x - 1| + 5.ln|x - 2| + C

    = 4.ln|x - 2| + \ln\left| \frac{x - 2}{x
- 1} ight| + C= 4.ln|x - 2| - \ln\left| \frac{x - 1}{x - 2} ight| +
C

    Đáp số bài tập kiểm tra khả năng vận dụng:

    \int_{}^{}{\frac{x^{2} + 2x - 1}{2x^{3}
+ 3x^{2} - 2x}dx }= \frac{1}{2}.\ln|x| + \frac{1}{10}.\ln|2x - 1| -
\frac{1}{10}.\ln|x + 2| + C

  • Câu 16: Thông hiểu
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm F(x) của hàm số f(x) = \sqrt{3x + 4}, biết F(0) = 8.

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{\sqrt{3x + 4}dx =
\int_{}^{}{(3x + 4)^{\frac{1}{2}}dx = \frac{2}{9}.(3x + 4)^{\frac{3}{2}}
+ C}}

    = \frac{2}{9}.(3x + 4)\sqrt{3x + 4} +
C

    F(0) = 8 \Rightarrow C =
\frac{56}{9}

    Vậy đáp án cần tìm là: F(x) =
\frac{2}{9}(3x + 4)\sqrt{3x + 4} + \frac{56}{9}

  • Câu 17: Nhận biết
    Tìm câu sai

    Cho f(x),g(x) là các hàm số liên tục trên \mathbb{R} . Tìm khẳng định sai trong các khẳng định sau?

    Hướng dẫn:

    Đáp án sai là: \int_{}^{}{\left\lbrack
f(x).g(x) ightbrack dx =
\int_{}^{}{f(x)dx.}\int_{}^{}{g(x)dx}}.

  • Câu 18: Thông hiểu
    Chọn phương án thích hợp

    Nguyên hàm của hàm số f(x) =
\frac{1}{\left( \ln x \right)^{2}} - \frac{1}{\ln x}

    Hướng dẫn:

    Ta có f(x) = \frac{1}{\left( \ln x
ight)^{2}} - \frac{1}{\ln x} = \frac{1 - \ln x}{\left( \ln x
ight)^{2}}

    = \frac{( - x)'.\ln x - ( - x).\left(
\ln x ight)'}{\left( \ln x ight)^{2}} = \left( \frac{- x}{\ln x}
ight)'

    \Rightarrow \int_{}^{}{f(x)dx = \frac{-
x}{\ln x} + C}.

  • Câu 19: Vận dụng
    Tìm nguyên hàm của hàm số f(x)

    Nguyên hàm của hàm số f(x) = \frac{2x}{(1
- x)^{3}}?

    Hướng dẫn:

    Nhận thấy x = 1 là nghiệm bội ba của phương trình (x - 1)^{3} = 0, do đó ta biến đổi:

    \frac{2x}{(1 - x)^{3}} =
\frac{A}{1 - x} + \frac{B}{(1 - x)^{2}} + \frac{C}{(1 - x)^{3}}

    =\frac{A\left( x^{2} - 2x + 1 ight) + B(1 - x) + C}{(1 -
x)^{3}}

    = \frac{Ax^{2} + ( - 2A - B)x + A + B +
C}{(1 - x)^{3}}

    Từ đây ta có \left\{ \begin{matrix}
A = 0 \\
- 2A - B = 2 \\
A + B +C=0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 0 \\
B = -2 \\
C = 2 \\
\end{matrix} ight.

    Ta có \int_{}^{}{\frac{2x}{(1 - x)^{3}}dx
= \int_{}^{}\left( \frac{- 2}{(1 - x)^{2}} + \frac{2}{(1 - x)^{3}}
ight)dx }= \frac{2}{x - 1} - \frac{1}{(x - 1)^{2}} + C

  • Câu 20: Thông hiểu
    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \left(
5x^{2} + 13x + 9 \right)e^{x}

    Hướng dẫn:

    Ta có f(x) = \left( 10x + 3 + 5x^{2} + 3x
+ 6 ight)e^{x}= \left\lbrack \left( 5x^{2} + 3x + 6 ight)' +
5x^{2} + 3x + 6 ightbrack e^{x}

    Từ bảng nhận dạng nguyên hàm phía trên \Rightarrow F(x) = \left( 5x^{2} + 3x + 6
ight)e^{x} + C là nguyên hàm của hàm số đã cho.

  • Câu 21: Nhận biết
    Chọn phương án đúng

    Nguyên hàm của hàm số f = e^{-
2017x} là:

    Hướng dẫn:

    Ta có \int_{}^{}{e^{- 2017x}dx =
\frac{1}{- 2017}e^{- 2017x} + C}

  • Câu 22: Vận dụng
    Tính nguyên hàm của I

    Tìm nguyên hàm I = \int_{}^{}{x\ln(2x -
1)dx}.

    Hướng dẫn:

    Đặt u = \ln(2x - 1) \Rightarrow du =
\frac{2}{2x - 1}dx;dv = xdx \Rightarrow v = \frac{x^{2}}{2}

    Khi đó

    \int_{}^{}{x\ln(2x - 1)dx} =\frac{x^{2}}{2}.\ln(2x - 1) - \int_{}^{}{\frac{x^{2}}{2}.\frac{2}{2x -
1}}dx

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\frac{x^{2}}{2x - 1}dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\left( \frac{x}{2} + \frac{1}{4} + \frac{1}{4(2x - 1)}
ight)dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| - \left(
\frac{x^{2}}{4} + \frac{x}{4} + \frac{1}{8}.\ln\left| (2x - 1) ight|
ight) + C

    = \frac{4x^{2} - 1}{8}.\ln|2x - 1| -
\frac{x(x + 1)}{4} + C

  • Câu 23: Thông hiểu
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
x\sqrt{x}.

    Hướng dẫn:

    Ta có:

    \int_{}^{}{x\sqrt{x}dx =
\int_{}^{}{x^{\frac{3}{2}}dx = \frac{2}{5}x^{\frac{5}{2}} + C =
\frac{2}{5}x^{2}\sqrt{x} + C}}.

  • Câu 24: Thông hiểu
    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \frac{1}{1 +
e^{x}} là:

    Hướng dẫn:

    Thay vì đi tìm nguyên hàm của hàm số theo cách truyền thống, ta có thể giải bài toán bằng bảng ở trên như sau:

    f(x) = \frac{1}{1 + e^{x}} = \frac{\left(
1 + e^{x} ight) - e^{x}}{1 + e^{x}} = 1 - \frac{e^{x}}{1 +
e^{x}}

    = x' - \frac{\left( 1 +
e^{x} ight)'}{1 + e^{x}} = x' - \left( \ln\left( e^{x} + 1
ight) ight)'

    = \left( x - \ln\left( e^{x} + 1 ight)
ight)' \Rightarrow \int_{}^{}{f(x)dx = x - \ln\left( e^{x} + 1
ight) + C}

  • Câu 25: Thông hiểu
    Tìm câu sai

    Cho hàm số f(x) = \frac{1}{2x -
3} . Gọi F(x) là một nguyên hàm của f(x). Chọn phương án sai.

    Hướng dẫn:

    Ta có F(x) = \int_{}^{}\frac{1}{2x - 3}dx
= \int_{}^{}{\frac{1}{2}.\frac{1}{(2x - 3)}d(2x - 3)}

    = \frac{\ln|2x - 3|}{2} + C

    Từ đây ta thấy F(x) = \frac{\ln|2x -
3|}{2} + 10 đúng.

    Với F(x) = \frac{\ln|4x - 6|}{4} +
10 ta thấy

    \frac{\ln|4x - 6|}{4} + 10 = \frac{ln2 +
\ln|2x - 3|}{4} + 10 eq F(x), vậy F(x) = \frac{\ln|4x - 6|}{4} + 10 sai.

  • Câu 26: Thông hiểu
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
\frac{x^{4} + 5}{x + 1} .

    Hướng dẫn:

    Ta có \int_{}^{}{\frac{x^{4} + 5}{x +
1}dx = \int_{}^{}{\frac{\left( x^{4} - 1 ight) + 6}{x +
1}dx}}

    = \int_{}^{}{\left\lbrack (x - 1)\left(
x^{2} + 1 ight) + \frac{6}{x + 1} ightbrack dx}

    = \int_{}^{}{\left( x^{3} - x^{2} + x - 1
ight)dx + 6\int_{}^{}\frac{d(x + 1)}{x + 1}}

    = \frac{1}{4}x^{4} - \frac{1}{3}x^{3} +
\frac{1}{2}x^{2} - x + 6ln|x + 1| + C

  • Câu 27: Thông hiểu
    Xác định họ nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \left( -
\frac{1}{x^{2}} - \frac{1}{x} \right)e^{- x}

    Hướng dẫn:

    Ta có f(x) = \left( - \frac{1}{x^{2}} -
\frac{1}{x} ight)e^{- x} = \left\lbrack \left( \frac{1}{x}
ight)' - \frac{1}{x} ightbrack e^{- x}

    \Rightarrow F(x) = \frac{e^{- x}}{x} +
C là nguyên hàm của hàm số đã cho.

  • Câu 28: Thông hiểu
    Tìm nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x) =
\frac{e^{x} + x.e^{x}.\ln x}{x} ?

    Hướng dẫn:

    Ta có f(x) = \frac{e^{x} +
x.e^{x}.\ln x}{x} = \frac{\left( 1 + x\ln x ight)e^{x}}{x}

    = \left( \frac{1}{x} + \ln x ight)e^{x}
= \left\lbrack \left( \ln x ight)' + \ln x ightbrack
e^{x}

    \Rightarrow F(x) = e^{x}.\ln x + C là nguyên hàm của hàm số đã cho.

  • Câu 29: Thông hiểu
    Tìm đáp án đúng

    Tìm nguyên hàm F(x) của hàm số f(x) = x.\ln\left( ex^{2} \right) với x > 0.

    Hướng dẫn:

    Ta có

    f(x) = x.\left( \ln e + 2\ln x ight) =
x(1 + 2\ln x)

    = x^{2}.\frac{1}{x} + (2x)\ln x =
x^{2}.\left( \ln x ight)' + \left( x^{2}
ight)'.\ln x

    = \left( x^{2}\ln x ight)'
\Rightarrow F(x) = x^{2}.\ln x + C

  • Câu 30: Vận dụng
    Tìm nguyên hàm của hàm số

    Cho F(x) = x^{2} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Hướng dẫn:

    Cách 1: Sử dụng tính chất của nguyên hàm

    \int_{}^{}{f(x)dx = F(x) \Rightarrow
F'(x) = f(x)}.

    Từ giả thiết, ta có:

    \int_{}^{}{f(x)}e^{2x}dx = F(x)
\Rightarrow f(x)e^{2x} = F'(x) = \left( x^{2} ight)' = 2x
\Rightarrow f(x) = \frac{2x}{e^{2x}}

    Suy ra f'(x) = \frac{(2x)'.e^{2x}
- 2x.\left( e^{2x} ight)'}{\left( e^{2x} ight)^{2}} = \frac{(2 -
4x)e^{2x}}{\left( e^{2x} ight)^{2}} = \frac{2 -
4x}{e^{2x}}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx
=}\int_{}^{}{\frac{2 - 4x}{e^{2x}}.e^{2x}dx = (2 - 4x)dx = 2x - 2x^{2}}
+ C

    Cách 2: Sử dụng công thức nguyên hàm từng phần.

    Nếu u, v là hai hàm số có đạo hàm liên tục trên K thì:

    \int_{}^{}{u(x)}v'(x)dx = u(x).v(x) -
\int_{}^{}{v(x).u'(x)}dx.

    Ta có \int_{}^{}{e^{2x}.f'(x)dx =
e^{2x}.f(x) - \int_{}^{}{f(x).2e^{2x}dx = f(x)e^{2x} -
2\int_{}^{}{f(x)e^{2x}dx}}}

    Từ giả thiết: \int_{}^{}{f(x)e^{2x}dx} =
F(x) = x^{2} \Rightarrow f(x)e^{2x} = F'(x) = \left( x^{2}
ight)' = 2x.

    Vậy \int_{}^{}{f'(x)e^{2x}dx = 2x -
2x^{2} + C}.

  • Câu 31: Thông hiểu
    Tìm nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x) = \frac{3x
- 7}{x + 2}

    Hướng dẫn:

    Ta có

    \int_{}^{}{f(x)dx = \int_{}^{}{\frac{3x -
7}{x + 2}dx = \int_{}^{}{\frac{3(x + 2) - 13}{x + 2}dx}}}

    = \int_{}^{}{\left( 3 - \frac{13}{x + 2}
ight)dx = \int_{}^{}{3dx - 13\int_{}^{}\frac{d(x + 2)}{x +
2}}}

    = 3x - 13ln|x + 2| + C

  • Câu 32: Nhận biết
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
7^{x}.

    Hướng dẫn:

    Ta có \int_{}^{}{7^{x}dx =
\int_{}^{}{7^{x}.\frac{d\left( 7^{x} ight)}{7^{x}.\ln7} =
\int_{}^{}{\frac{d\left( 7^{x} ight)}{\ln7} = \frac{7^{x}}{\ln7} +
C}}}.

  • Câu 33: Thông hiểu
    Xác định các hệ số a, b, c, d

    Tìm a, b, c, d để F(x) = \left(
ax^{3} + bx^{2} + cx + d \right)e^{x} là một nguyên hàm của f(x) = \left( 2x^{3} + 9x^{2} - 2x + 5
\right)e^{x}.

    Hướng dẫn:

    Ta có F'(x) = \left( 3ax^{2} + 2bx +
c ight)e^{x} + \left( ax^{3} + bx^{2} + cx + d
ight)e^{x}

    = \left\lbrack ax^{3} + (3a + b)x^{2} +
(2b + c)x + (c + d) ightbrack e^{x}

    F'(x) = f(x),\forall x
\Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
3a + b = 9 \\
2b + c = - 2 \\
c + d = 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
c = - 8 \\
d = 13 \\
\end{matrix} ight.

  • Câu 34: Thông hiểu
    Chọn phương án đúng

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{e^{x} + 3}.

    Hướng dẫn:

    Ta có

    \int_{}^{}{\frac{dx}{e^{x} + 3} =
\int_{}^{}{\frac{e^{x}dx}{e^{x}\left( e^{x} + 3 ight)} =
\int_{}^{}\frac{d\left( e^{x} ight)}{e^{x}\left( e^{x} + 3
ight)}}}

    = \frac{1}{3}\int_{}^{}{\left\lbrack
\frac{1}{e^{x}} - \frac{1}{e^{x} + 3} ightbrack d\left( e^{x}
ight) = \frac{1}{3}\ln\left| \frac{e^{x}}{e^{x} + 3} ight| +
C}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (62%):
    2/3
  • Vận dụng (24%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm