Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Bạn đã dùng hết 2 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12 Tìm tiệm cận của đồ thị hàm số khi biết bảng biến thiên

VnDoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Tìm tiệm cận của đồ thị hàm số biết bảng biến thiên, đồ thị hàm số. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 30 câu
  • Điểm số bài kiểm tra: 30 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    + Tiệm cận ngang y = - 5

    + Tiệm cận đứng x = 2.

  • Câu 2: Nhận biết
    Chọn khẳng định đúng

    Cho đồ thị hàm số y = f(x)y=f(x) như hình bên. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Khẳng định đúng: “Đồ thị hàm số có tiệm cận đứng x = 0, tiệm cận ngang y = 1”.

  • Câu 3: Thông hiểu
    Định tổng số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Dựa vào bảng biến thiên của hàm số ta có:

    \underset{\mathbf{x ightarrow \pm
\infty}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=}\mathbf{2}\mathbf{\Rightarrow
y =}\mathbf{2}là một tiệm cận ngang

    \underset{\mathbf{x
ightarrow}\mathbf{1}^{\mathbf{+}}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=
- \infty \Rightarrow x =}\mathbf{1}là một tiệm cận đứng

    Vậy đồ thị hàm số có tổng số đường tiệm cận là2.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{x + 1}{x + 3}y=x+1x+3

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 3^{+}}y = -\infty\lim_{x ightarrow -3^{-}}y = + \infty nên đồ thị hàm số nhận đường thẳng x = - 3 làm tiệm cận đứng.

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) liên tục trên \mathbb{R}\backslash\left\{ 1
ight\}Extra \left or missing \right có bảng biến thiên như hình vẽ. Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số y = f(x)y=f(x)

    Hướng dẫn:

    Do \lim_{x ightarrow 1^{+}}y = -
\infty;\ \lim_{x ightarrow 1^{-}} = + \infty \Rightarrow TCĐ: x = 1.

    \lim_{x ightarrow + \infty}y = - 1;\
\lim_{x ightarrow - \infty}y = 1 \Rightarrowđồ thị có 2 tiệm cận ngang là y = \pm 1

    Vậy, đồ thị hàm số đã cho có tổng số TCĐ và TCN là 3.

  • Câu 6: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số f(x)f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ - 1
ight\},Extra \left or missing \right có bảng biến thiên như sau:

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 1)^{+}}f(x) = + \infty \\
\lim_{x ightarrow \ ( - 1)^{-}}f(x) = - \infty \\
\end{matrix} ight.\  ightarrow x = - 1 là TCĐ.

    \lim_{x ightarrow - \infty}f(x) = 5
ightarrow y = 5 là TCN và \lim_{x
ightarrow + \infty}f(x) = 2 ightarrow y = 2 là TCN.

    Vậy câu đúng là: “Đồ thị hàm số có hai TCN y = 2, y =
5 và một TCĐ x = - 1.

  • Câu 7: Thông hiểu
    Tìm tổng số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Hàm số y = f(x) có tập xác định: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    Ta có:

    \lim_{x ightarrow + \infty}f(x) = +
\infty Không tồn tại tiệm cận ngang khi x \to  + \infty .

    \lim_{x ightarrow - \infty}f(x) =
2 vậy hàm số y = f(x) có tiệm cận ngang y = 2.

    \underset{\mathbf{x
ightarrow}\mathbf{0}^{\mathbf{+}}}{\mathbf{\lim}}\mathbf{f}\left(
\mathbf{x} ight)\mathbf{= + \infty}; \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - 4.

    Đồ thị hàm số y = f(x) có tiệm cận đứng x = 0.

    Vậy tổng số tiệm cận đứng và ngang là 2.

  • Câu 8: Thông hiểu
    Tìm tổng số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

    Hướng dẫn:

    Ta có \lim_{x ightarrow + \ \infty}f(x)= 3\lim_{x ightarrow - \infty}f(x) = 0 nên đồ thị hàm số có 2 tiệm cận ngang là các đường thẳng có phương trình y = 3y = 0.

    \lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có 1 tiệm cận đứng là đường thẳng có phương trình x = 0.

  • Câu 9: Thông hiểu
    Tìm số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x)y=f(x) có bảng biến như sau:

    Số đường tiệm cận của đồ thị hàm số là:

    Hướng dẫn:

    Từ bảng biến thiên của hàm số ta có:

    +\lim_{x ightarrow - \infty}y =
0;\lim_{x ightarrow + \infty}y = 0 \Rightarrowđồ thị hàm số nhận đường thẳng y = 0 là tiệm cận ngang.

    +\lim_{x ightarrow ( - 3)^{-}}y = +
\infty;\lim_{x ightarrow ( - 3)^{+}} = - \infty \Rightarrowđồ thị hàm số nhận đường thẳng x = - 3 là tiệm cận đứng.

    +\lim_{x ightarrow 3^{-}}y = +
\infty;\lim_{x ightarrow 3^{+}} = - \infty \Rightarrowđồ thị hàm số nhận đường thẳng x = 3là tiệm cận đứng.

    Vậy số đường tiệm cận của đồ thị hàm số là 3.

  • Câu 10: Thông hiểu
    Tìm tổng số đường tiệm cận

    Cho hàm số có bảng biến thiên như hình sau

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số 00

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =4,\lim_{x ightarrow + \infty}y = - 1 \RightarrowĐồ thị hàm số có hai tiệm cận ngang là y = - 1y = 4.

    \lim_{x ightarrow - 1^{-}}y = +\infty;\lim_{x ightarrow - 1^{+}}y = - \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = -
1.

    \lim_{x ightarrow 1^{-}}y = -
\infty,\lim_{x ightarrow 1^{+}}y = + \infty \Rightarrow Đồ thị hàm số có tiệm cận đứng x =
1.

    Nên đồ thị hàm số có 4 đường tiệm cận.

  • Câu 11: Nhận biết
    Tìm tiệm cận đứng

    Tiệm cận đứng của đồ thị hàm số y =\frac{2x - 2}{x + 1}y=2x2x+1 là

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 1^{+}}y =\lim_{x ightarrow - 1^{+}}\frac{2x - 2}{x + 1} = - \infty và \lim_{x ightarrow - 1^{-}}y = \lim_{x
ightarrow - 1^{-}}\frac{2x - 2}{x + 1} = + \infty nên đường thẳng x = - 1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 12: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x)y=f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\}Extra \left or missing \right, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên, ta có nhận xét như sau:

    “Đồ thị hàm số có một đường tiệm cận đứng” đúng vì \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{-}}f(x) = - \infty ightarrow x = 0 là tiệm cận đứng của đồ thị hàm số.

    “Hàm số đạt cực tiểu tại x = 0.” sai vì tại x = 0 hàm số không xác định.

    “Giá trị lớn nhất của hàm số là 2” sai vì hàm số đạt giá trị lớn nhất bằng 1 trên khoảng (0\ ; + \infty) mà không đạt giá trị lớn nhất trên khoảng ( - \infty\ ;\
0).

    “Hàm số không có cực trị” sai vì đạo hàm y' đổi dấu từ "\  + " sang "\  - " khi đi qua điểm x = 1\ \ \overset{}{ightarrow}\ \ x = 1 là điểm cực đại của hàm số.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Tiệm cận ngang của đồ thị hàm số ACAC là:

    Hướng dẫn:

    Ta có : \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{3x + 1}{x - 1} = 3\lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{3x + 1}{x - 1} = 3 nên y = 3 là tiệm cận ngang của đồ thị hàm số.

  • Câu 14: Nhận biết
    Tìm tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau:

    Kết luận nào sau đây đầy đủ về đường tiệm cận của đồ thị hàm số y = f(x)y=f(x)?

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 1}f(x) =
\sqrt{2} eq \pm \infty nên đồ thị hàm số không có TCĐ.

    Ta có \lim_{x ightarrow - \infty}f(x) =
- 1 ightarrow y = - 1 là TCN; \lim_{x ightarrow + \infty}f(x) = 1 ightarrow
y = 1 là TCN.

    Vậy câu đúng là: “Đồ thị hàm số có đường tiệm cận ngang y = \pm 1”.

  • Câu 15: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x)y=f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ -
1 ight\}Extra \left or missing \right, có bảng biến thiên như sau:

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \left\{ \begin{matrix}
\lim_{x ightarrow ( - 1)^{-}}f(x) = + \infty \\
\lim_{x ightarrow ( - 1)^{+}}f(x) = - \infty \\
\end{matrix} ight.\  ightarrow x = - 1 là TCĐ.

    \left\{ \begin{matrix}
\lim_{x ightarrow - \infty}y = - 2 \\
\lim_{x ightarrow + \infty}y = - 2 \\
\end{matrix} ight.\  ightarrow y = - 2 là TCN.

    Vậy đồ thị hàm số có tiệm cận đứng x = -
1 và tiệm cận ngang y = -
2..

  • Câu 16: Nhận biết
    Xác định tiệm cận đứng của đồ thị hàm số

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x + 2}{x - 1}y=2x+2x1

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}.

    Ta có \lim_{x ightarrow 1^{-}}y = -\infty;\lim_{x ightarrow 1^{+}}y = + \infty, suy ra đồ thị có tiệm cận đứng là x = 1.

  • Câu 17: Nhận biết
    Xác định tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau

    Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là

    Hướng dẫn:

    Quan sát bảng biến thiên ta thấy \lim_{x
ightarrow 1^{+}}f(x) = - \infty; \lim_{x ightarrow 1^{-}}f(x) = +
\infty.

    Do đó đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y =
f(x).

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow + \infty}y = 0
ightarrow y = 0 là TCN;

    \lim_{x ightarrow \ ( - 2)^{+}}y = -
\infty ightarrow x = - 2 là TCĐ;

    \lim_{x ightarrow 0^{-}}y = + \infty
ightarrow x = 0 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng ba đường tiệm cận

  • Câu 19: Thông hiểu
    Tìm câu sai

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây là sai?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow \pm \infty}y = 0
ightarrow y = 0 là TCN;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 3)^{+}}y = - \infty \\
\lim_{x ightarrow \ ( - 3)^{-}}y = + \infty \\
\end{matrix} ight.\  ightarrow x = - 3 là TCĐ;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ 3^{+}}y = - \infty \\
\lim_{x ightarrow \ 3^{-}}y = + \infty \\
\end{matrix} ight.\  ightarrow x = 3 là TCĐ.

    Vậy đồ thị hàm số có tất cả ba đường tiệm cận. Do đó “Đồ thị hàm số có tất cả hai đường tiệm cận” sai.

  • Câu 20: Nhận biết
    Xác định tiệm cận ngang của đồ thị hàm số

    Tiệm cận ngang của đồ thị hàm số y =
\frac{2x + 1}{x - 1}y=2x+1x1 là:

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{2x + 1}{x - 1} = \lim_{x ightarrow \pm \infty}\frac{2 +
\frac{1}{x}}{1 - \frac{1}{x}} = 2.

    Suy ra đồ thị hàm số có tiệmcận ngang là \mathbf{y =}\mathbf{2}.

  • Câu 21: Thông hiểu
    Tính tổng các đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Nhìn bảng biến thiên ta thấy x = 0 hàm số không xác định nên x = 0 là TCĐ của đồ thị hàm số

    \lim_{x ightarrow + \infty}f(x) = 3\Rightarrow y = 3 là TCN của đồ thị hàm số

    \lim_{x ightarrow - \infty}f(x) = 1
\Rightarrow y = 1là TCN của đồ thị hàm số

    Vậy hàm số có 3 tiệm cận

  • Câu 22: Thông hiểu
    Chọn phương án thích hợp

    Cho hàm số f(x)f(x) có bảng biến thiên như sau

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

    Hướng dẫn:

    Từ bảng biến thiên đã cho ta có :

    \lim_{x ightarrow - \infty}f(x) =0 nên đường thẳng y = 0 là một tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 0^{-}}f(x) = -
\infty nên đường thẳng x =
0 là một tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có hai đường tiệm cận.

  • Câu 23: Thông hiểu
    Tìm số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow + \infty}y = + \infty
ightarrow đồ thị hàm số không có tiệm cận ngang;

    \lim_{x ightarrow \ ( - 2)^{+}}y = +
\infty ightarrow x = - 2 là TCĐ;

    \lim_{x ightarrow \ 1^{+}}y = - \infty
ightarrow x = 1 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng hai đường tiệm cận.

  • Câu 24: Thông hiểu
    Chọn phương án thích hợp

    Cho hàm số f(x)f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Ta có: \lim_{x ightarrow + \infty}f(x)= 3 ta được tiệm cận ngang y =
3

    \lim_{x ightarrow ( - 2)^{-}}f(x) = +
\infty ta được tiệm cận đứng x = -
2

  • Câu 25: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số f(x)f(x) có bảng biến thiên như sau

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Dựa vào bảng biến thiên của hàm số ta có:

    \underset{\mathbf{x ightarrow -
\infty}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=}\mathbf{0}\mathbf{\Rightarrow
y =}\mathbf{0}là một tiệm cận ngang

    \underset{\mathbf{x ightarrow +
\infty}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=}\mathbf{5}\mathbf{\Rightarrow
y =}\mathbf{5}là một tiệm cận ngang

    \underset{\mathbf{x
ightarrow}\mathbf{1}^{\mathbf{-}}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=
- \infty \Rightarrow x =}\mathbf{1}là một tiệm cận đứng

    Vậy đồ thị hàm số có tổng số đường tiệm cận là 3.

  • Câu 26: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
0 nên đường thẳng y = 0 là đường tiệm cận ngang của đồ thị hàm số y =
f(x).

    \lim_{x ightarrow + \infty}f(x) = -
\infty nên đồ thị hàm số y =
f(x) không có tiệm cận ngang khi x
ightarrow + \infty.

    \lim_{x ightarrow - 2^{+}}f(x) = +
\infty, \lim_{x ightarrow -
2^{-}}f(x) = - \infty nên đường thẳng x = - 2 là đường tiệm cận đứng của đồ thị hàm số y = f(x).

    \lim_{x ightarrow 2^{+}}f(x) = +
\infty, \lim_{x ightarrow
2^{-}}f(x) = - \infty nên đường thẳng x = 2 là đường tiệm cận đứng của đồ thị hàm số y = f(x).

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là 3 tiệm cận.

  • Câu 27: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có:

    \mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x ight) =  - \infty, suy ra đường thẳng x = -
2 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 0^{-}}f(x) = +
\infty, suy ra đường thẳng x =
0 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow + \infty}f(x) =0, suy ra đường thẳng y =
0 là tiệm cận ngang của đồ thị hàm số.

    Vậy đồ thị hàm số có 3 đường tiệm cận.

  • Câu 28: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho bằng

    Hướng dẫn:

    Ta có

    \lim_{x ightarrow - 2^{+}}y = - \infty
\Rightarrow x = - 2 là tiệm cận đứng của đồ thị hàm số đã cho.

    \lim_{x ightarrow 0^{-}}y = + \infty
\Rightarrow x = 0 là tiệm cận đứng của đồ thị hàm số đã cho.

    \lim_{x ightarrow + \infty}y = 0
\Rightarrow y = 0 là tiệm cận ngang của đồ thị hàm số đã cho.

    Vậy đồ thị hàm số đã cho có tổng đường tiệm cận đứng và tiệm cận ngang là 3.

  • Câu 29: Nhận biết
    Chọn đáp án đúng

    Tiệm cận đứng của đồ thị hàm số y =\frac{x - 1}{x - 3}y=x1x3 là

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x - 1}{x- 3} = - \infty. Suy ta tiệm cận đứng là đường thẳng x = 3.

  • Câu 30: Thông hiểu
    Chọn phương án thích hợp

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên như sau

    Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow 1^{-}}y = +
\infty nên đường thẳng x =
1 là đường tiệm cận đứng của đồ thị hàm số

    \lim_{x ightarrow - \infty}y =
2,\lim_{x ightarrow + \infty}y = 5 nên đường thẳng y = 2y =
5 là các đường tiệm cận ngang của đồ thị hàm số

    Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Bạn còn 2 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 2 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo

Nhiều người đang xem

🖼️

Chuyên đề Toán 12

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng