Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12 Phương trình đường thẳng Mức độ Thông hiểu

Tổng hợp bài tập trắc nghiệm Toán học 12 chuyên đề Phương trình đường thẳng trong không gian, giúp học sinh luyện tập và củng cố hiệu quả kiến ​​thức lớp 12. Tài liệu đính kèm đáp án chi tiết, phù hợp để ôn thi THPT Quốc gia.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 23 câu
  • Điểm số bài kiểm tra: 23 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \left( P \right):2x + y + 2z - 1 = 0 và đường thẳng \Delta\ :\frac{x + 1}{2} = \frac{y}{- 1} =
\frac{z - 3}{3}. Phương trình đường thẳng d đi qua điểm B(2; - 1;5) song song với (P) và vuông góc với \Delta

    Hướng dẫn:

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = (2; -
1;3)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (2;1;2)

    Gọi \overrightarrow{a_{d}} là vectơ chỉ phương d

    \left\{ \begin{matrix}
d\bot(P) \\
d\bot\Delta \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{d}}\bot\overrightarrow{n_{P}} \\
\overrightarrow{a_{d}}\bot\overrightarrow{a_{\Delta}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{a_{\Delta}};\overrightarrow{n_{P}} ightbrack = ( -
5;2;4)

    Vậy phương trình chính tắc của d\frac{x - 2}{- 5} = \frac{y + 1}{2} =
\frac{z - 5}{4}

  • Câu 2: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng (\alpha):x - 3y + z = 0(\beta):x + y - z + 4 = 0 = 0. Phương trình tham số của đường thẳng d

    Hướng dẫn:

    Cách 1:

    Đặt y = t, ta có \left\{ \begin{matrix}
x + z = 3t \\
x - z = - 4 - t \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = - 2 + t \\
z = 2 + 2t \\
\end{matrix} ight.

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight.

    Cách 2:

    Tìm một điểm thuộc d, bằng cách cho y = 0

    Ta có hệ \left\{ \begin{matrix}
x + z = 0 \\
x - z = - 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
x = - 2 \\
z = 2 \\
\end{matrix} ight.\  \Rightarrow M( - 2;0;2) \in d

    (\alpha) có vectơ pháp tuyến \overrightarrow{n_{\alpha}} = (1; -
3;1)

    (\beta) có vectơ pháp tuyến \overrightarrow{n_{\beta}} = (1;1; -
1)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {2;2;4} ight)

    d đi qua điểm M(-2;0;2) và có vectơ chỉ phương là \overrightarrow {{a_d}}

    Vậy phương trình tham số của d là  \left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight. 

  • Câu 3: Thông hiểu
    Xác định phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = - 3 + 2t \\
y = 1 - t \\
z = - 1 + 4t \\
\end{matrix} \right. . Phương trình chính tắc của đường thẳng đi qua điểm A( - 4; - 2;4), cắt và vuông góc với d là:

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi B = \Delta \cap d

    \begin{matrix}
B \in d \Rightarrow B( - 3 + 2t;1 - t; - 1 + 4t) \\
\overrightarrow{AB} = (1 + 2t;3 - t; - 5 + 4t) \\
\end{matrix}

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (2; - 1;4)

    \begin{matrix}
\Delta\bot d \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{d}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{d}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = 1 \\
\end{matrix}

    \Delta đi qua điểm A( - 4; - 2;4) và có vectơ chỉ phương \overrightarrow{AB} = (3;2; -
1)

    Vậy phương trình của \Delta\frac{x + 4}{3} = \frac{y + 2}{2} = \frac{z
- 4}{- 1}

  • Câu 4: Thông hiểu
    Xác định phương trình tham số của d’

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 12}{4} = \frac{y - 9}{3} = \frac{z -
1}{1}, và mặt thẳng (P)\ :3x + 5y -
z - 2 = 0. Gọi d'là hình chiếu của d lên (P).Phương trình tham số của d'

    Hướng dẫn:

    Cách 1:

    Gọi A = d \cap (P)

    \begin{matrix}
A \in d \Rightarrow A(12 + 4a;9 + 3a;1 + a) \\
A \in (P) \Rightarrow a = - 3 \Rightarrow A(0;0; - 2) \\
\end{matrix}

    d đi qua điểm B(12;9;1)

    Gọi H là hình chiếu của B lên (P)

    (P)có vectơ pháp tuyến \overrightarrow{n_{P}} = (3;5; - 1)

    BH đi qua B(12;9;1) và có vectơ chỉ phương \overrightarrow{a_{BH}} = \overrightarrow{n_{P}} =
(3;5; - 1)

    \begin{matrix}
BH:\left\{ \begin{matrix}
x = 12 + 3t \\
y = 9 + 5t \\
z = 1 - t \\
\end{matrix} ight.\  \\
H \in BH \Rightarrow H(12 + 3t;9 + 5t;1 - t) \\
H \in (P) \Rightarrow t = - \frac{78}{35} \Rightarrow H\left(
\frac{186}{35}; - \frac{15}{7};\frac{113}{35} ight) \\
\overrightarrow{AH} = \left( \frac{186}{35}; -
\frac{15}{7};\frac{183}{35} ight) \\
\end{matrix}

    d' đi qua A(0;0; - 2) và có vectơ chỉ phương \overrightarrow{a_{d'}} = (62; -
25;61)

    Vậy phương trình tham số của d'\left\{ \begin{matrix}
x = 62t \\
y = - 25t \\
z = - 2 + 61t \\
\end{matrix} ight.

    Cách 2:

     

    • Gọi (Q) qua d và vuông góc với (P)

     

    d đi qua điểm B(12;9;1) và có vectơ chỉ phương \overrightarrow{a_{d}} = (4;3;1)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (3;5; - 1)

    (Q) qua B(12;9;1) có vectơ pháp tuyến \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{a_{d}},\overrightarrow{n_{P}} ightbrack = ( -
8;7;11)

    (Q):8x - 7y - 11z - 22 = 0

     

    • d' là giao tuyến của (Q)(P)

     

    Tìm một điểm thuộc d', bằng cách cho y = 0

    Ta có hệ \left\{ \begin{matrix}
3x - z = 2 \\
8x - 11z = 22 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 0 \\
y = - 2 \\
\end{matrix} ight.\  \Rightarrow M(0;0; - 2) \in d'

    d' đi qua điểm M(0;0; - 2)và có vectơ chỉ phương \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{n_{Q}} ightbrack = (62; -
25;61)

    Vậy phương trình tham số của d'\left\{ \begin{matrix}
x = 62t \\
y = - 25t \\
z = - 2 + 61t \\
\end{matrix} ight.

  • Câu 5: Thông hiểu
    Tìm đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + 5z - 4 = 0. Phương trình đường thẳng \Delta đi qua điểm A song song với (P) và vuông góc với trục tung là

    Hướng dẫn:

    Oy có vectơ chỉ phương \overrightarrow j  = \left( {0;1;0} ight)

    (P) có vectơ pháp tuyến \overrightarrow {{n_P}}  = \left( {2; - 3;5} ight)

     \Delta  đi qua điểm A(1; -
2;1) và có vectơ chỉ phương là \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow k ;\overrightarrow {{n_P}} } ight] = \left( {5;0; - 2} ight)

    Vậy phương của d\left\{ \begin{matrix}
x = - 2 + 5t \\
y = 1 \\
y = - 3 - 2t \\
\end{matrix} ight.\ .

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{- 1} = \frac{y - 1}{3} =
\frac{z - 1}{2}d_{2}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = - 2 + t \\
z = - 1 - t \\
\end{matrix} \right.. Phương trình đường thẳng nằm trong (\alpha):x + 2y - 3z - 2 = 0 và cắt hai đường thẳng d_{1},\ d_{2} là:

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm

     

    • Gọi A = d_{1} \cap
(\alpha)

     

    \begin{matrix}
A \in d_{1} \Rightarrow A(2 - a;1 + 3a;1 + 2a) \\
A \in (\alpha) \Rightarrow a = - 1 \Rightarrow A(3; - 2; - 1) \\
\end{matrix}

     

    • Gọi B = d_{2} \cap
(\alpha)

     

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - 3b; - 2 + b; - 1 - b) \\
B \in (\alpha) \Rightarrow b = 1 \Rightarrow B( - 2; - 1; - 2) \\
\end{matrix}

     

    • d đi qua điểm A(3; - 2; - 1) và có vectơ chỉ phương \overrightarrow{AB} = ( - 5;1; -
1)

     

    Vậy phương trình chính tắc của d\frac{x - 3}{- 5} = \frac{y + 2}{1} =
\frac{z + 1}{- 1}.

  • Câu 7: Vận dụng
    Định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;1),\ B( - 1;2;3) và đường thẳng \Delta\ :\frac{x + 1}{- 2} = \frac{y - 2}{1}
= \frac{z - 3}{3}. Phương trình đường thẳng đi qua điểm A, đồng thời vuông góc với hai đường thẳng AB\Delta

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm và có vectơ chỉ phương \overrightarrow{a_{d}}

    \overrightarrow{AB} = ( -
2;3;2)

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = ( -
2;1;3)

    \left\{ \begin{matrix}
d\bot AB \\
d\bot\Delta \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{d}}\bot\overrightarrow{AB} \\
\overrightarrow{a_{d}}\bot\overrightarrow{a_{\Delta}} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{a_{d}} =
\left\lbrack \overrightarrow{AB};\overrightarrow{a_{\Delta}}
ightbrack = (7;2;4)

    Vậy phương trình chính tắc của d\frac{x - 1}{7} = \frac{y + 1}{2} =
\frac{z - 1}{4}

  • Câu 8: Thông hiểu
    Tìm đáp án chưa đúng

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(0;1;2), B(-2;-1;-2),C(2;-3;-3). Đường thẳng d đi qua điểm B và vuông góc với mặt phẳng (ABC). Phương trình nào sau đây không phải là phương trình của đường thẳng d.

    Hướng dẫn:

    \overrightarrow{AB} = ( - 2; - 2; -
4)

    \overrightarrow{AC} = (2; - 4; -
5)

    Đường thẳng d đi qua điểm B( - 2; - 1; - 2) và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 6; - 18;12)
= - 6(1;3; - 2)

  • Câu 9: Nhận biết
    Chọn phương trình đường thẳng thích hợp

    Trong không gian với hệ tọa độ  Oxyz,  cho đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha):x - 2y - z + 1 = 0(\beta):2x + 2y - 3z - 4 = 0. Phương trình đường thẳng d đi qua điểm M(1; - 1;0) và song song với đường thẳng \Delta

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {1; - 2; - 1} ight)

    \left( \beta  ight) có vectơ pháp tuyến \overrightarrow {{n_\beta }}  = \left( {2;2; - 3} ight)

    d đi qua điểm M và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {8;1;6} ight)

    Vậy phương của d là \frac{x - 1}{8} = \frac{y + 1}{1} =
\frac{z}{6}.

  • Câu 10: Vận dụng
    Xác định phương trình d

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2)B( - 1;2;4). Phương trình d đi qua trọng tâm của \Delta OAB và vuông góc với mặt phẳng (OAB)

    Hướng dẫn:

    Gọi G là trọng tâm \Delta OAB, ta có G(0;2;2)

    \begin{matrix}
\overrightarrow{OA} = (1;4;2) \\
\overrightarrow{OB} = ( - 1;2;4) \\
\end{matrix}

    Gọi \overrightarrow{a_{d}} là vectơ chỉ phương của d

    d\bot(OAB) \Rightarrow \left\{
\begin{matrix}
d\bot OA \\
d\bot OB \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{d}}\bot\overrightarrow{OA} \\
\overrightarrow{a_{d}}\bot\overrightarrow{OB} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{a_{d}} =
\left\lbrack \overrightarrow{OA},\overrightarrow{OB} ightbrack =
(12; - 6;6) = 6(2; - 1;1)

    Vậy phương trình của d\frac{x}{2} = \frac{y - 2}{- 1} = \frac{z -
2}{1}

  • Câu 11: Thông hiểu
    Viết phương trình tham số

    Trong không gian với hệ tọa độ Oxyz,cho tam giác \overrightarrow{a_{\Delta}} =
\overrightarrow{n_{P}} = (2; - 1;1) với M = \Delta \cap (P). Phương trình tham số của đường thẳng đi qua điểm A và song song với BC là

    Hướng dẫn:

    Gọi d là đường thẳng cẩn tìm.

    \overrightarrow{BC} = (0; - 2; - 4) = -
2(0;1;2)

    d song song với M( - 3;1;1) nên d có vectơ chỉ phương \overrightarrow{a_{d}} =
(0;1;2)

    d qua A và có vectơ chỉ phương \overrightarrow{a_{d}}

    Vậy phương trình tham số của d là \left\{
\begin{matrix}
x = 1 \\
y = 4 + t \\
z = 1 + 2t \\
\end{matrix} ight.\ .

  • Câu 12: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y + 2}{- 1} =
\frac{z - 3}{1}d_{2}:\frac{x -
1}{- 1} = \frac{y - 1}{2} = \frac{z + 1}{1}. Phương trình đường thẳng \Delta đi qua điểm A(1;2;3) vuông góc với d_{1} và cắt d_{2} là:

    Hướng dẫn:

    Gọi B = \Delta \cap d_{2}

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - t;1 + 2t; - 1 + t) \\
\overrightarrow{AB} = ( - t;2t - 1;t - 4) \\
\end{matrix}

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2; - 1;1)

    \begin{matrix}
\Delta\bot d_{1} \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{1}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{1}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = - 1 \\
\end{matrix}

    \Delta đi qua điểm A(1;2;3) và có vectơ chỉ phương \overrightarrow{AB} = (1; - 3; - 5)

    Vậy phương trình của \Delta\frac{x - 1}{1} = \frac{y - 2}{- 3} =
\frac{z - 3}{- 5}.

  • Câu 13: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z}{-
1}. Viết phương trình đường thẳng \Delta đi qua điểm A(2;3; - 1) cắt d tại B sao cho khoảng cách từ B đến mặt phẳng (\alpha):x + y + z - 1 = 0 bằng 2\sqrt{3}.

    Hướng dẫn:

    B \in d \Rightarrow B(1 + t;2 + 2t; -
t)

    d\left( B,(\alpha) ight) = 2\sqrt{3}
\Leftrightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = - 4 \\
\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}
B(3;6; - 2),\ \overrightarrow{AB} = (1;3; - 1) \\
B( - 3; - 6;4),\ \overrightarrow{AB} = ( - 5; - 9;5) \\
\end{matrix} ight.S

    \Delta đi qua điểm B và có vectơ chỉ phương \overrightarrow{AB}

    Vậy phương trình của \Delta\frac{x + 3}{- 5} = \frac{y + 6}{- 9} =
\frac{z - 2}{5}\frac{x - 3}{1}
= \frac{y - 6}{3} = \frac{z + 2}{- 1}.

  • Câu 14: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz phương trình đường thẳng \Delta đi qua điểm M(2;1; - 5), đồng thời vuông góc với hai vectơ \overrightarrow{a} =
(1;0;1)\overrightarrow{b} =
(4;1; - 1)

    Hướng dẫn:

    \Delta đi qua điểm M(2;1; - 5), và có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow a ;\overrightarrow b } ight] = \left( { - 1;5;1} ight)

    Vậy phương trình chính tắc của   là d_{2}:\left\{
\begin{matrix}
x = t \\
y = 3 \\
z = - 2 + t \\
\end{matrix} ight.

  • Câu 15: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \left( \alpha  \right):2x - y + 2z - 3 = 0. Phương trình đường thẳng d đi qua điểm A(2;-3;-1), song song với hai mặt phẳng \left( \alpha  \right);\left( {Oyz} \right) là.

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {2; - 1;2} ight)

    (Oyz) có vectơ pháp tuyến \overrightarrow i  = \left( {1;0;0} ight)

    d đi qua điểm A và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{\alpha}},\overrightarrow{i} ightbrack =
(0;2;1)

    Vậy phương của d là \left\{ \begin{matrix}
x = 2 \\
y = - 3 + 2t \\
z = - 1 + t \\
\end{matrix} ight.

  • Câu 16: Vận dụng
    Xác định phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(2;1;
- 2),B(4; - 1;1),C(0; - 3;1). Phương trình d đi qua trọng tâm của tam giác ABC và vuông góc với mặt phẳng (ABC)

    Hướng dẫn:

    Gọi G là trọng tâm ABC, ta có G(2 ; -1 ; 0)

    Gọi \overrightarrow{a_{d}} là vectơ chỉ phương của d

    \overrightarrow{AB} = (2; -
2;3)

    \overrightarrow{AC} = ( - 2; -
4;3)

    d\bot(ABC) \Rightarrow \left\{
\begin{matrix}
d\bot AB \\
d\bot AC \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
{\overrightarrow{a}}_{d}\bot\overrightarrow{AB} \\
{\overrightarrow{a}}_{d}\bot\overrightarrow{AC} \\
\end{matrix} ight.

    \Rightarrow {\overrightarrow{a}}_{d} =
\left\lbrack \overrightarrow{AB};\overrightarrow{AC} ightbrack = (6;
- 12; - 12) = 6(1; - 2; - 2)

    d đi qua G(2; - 1;0) và có vectơ chỉ phương là \overrightarrow{a_{d}} = (1; - 2; -
2)

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = 2 + t \\
y = - 1 - 2t \\
z = - 2t \\
\end{matrix} ight.

  • Câu 17: Thông hiểu
    Tìm phương trình d thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 9. Phương trình đường thẳng d đi qua tâm của mặt cầu (S), song song với \left( \alpha  \right):2x + 2y - z - 4 = 0 và vuông góc với đường thẳng \frac{x - 1}{2} = \frac{y + 2}{5} = \frac{z - 1}{-
1} là.

    Hướng dẫn:

    Tâm của mặt cầu (S) là I(1;-2;3)

    \Delta có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \left( {3; - 1;1} ight)

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_a}}  = \left( {2;2; - 1} ight)

    d đi qua điểm I và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{a_\Delta }} ;\overrightarrow {{n_\alpha }} } ight] = \left( { - 1;5;8} ight)

    Vậy phương của d là \left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + 5t \\
z = 3 + 8t \\
\end{matrix} ight.\ .

  • Câu 18: Thông hiểu
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y}{3} = \frac{z +
1}{- 1}d_{2}:\left\{
\begin{matrix}
x = 1 + t \\
y = 3 - 2t \\
z = 5 - 2t \\
\end{matrix} \right.. Phương trình đường thẳng \Delta đi qua điểm A(2;3; - 1) và vuông góc với hai đường thẳng d_{1},\ d_{2}

    Hướng dẫn:

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2;3; - 1)

    d_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = (1; - 2; -
2)

    Gọi \overrightarrow{a_{\Delta}} là vectơ chỉ phương của \Delta

    \left\{ \begin{matrix}
\Delta\bot d_{1} \\
\Delta\bot d_{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{1}} \\
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{a_{\Delta}} =
\left\lbrack \overrightarrow{a_{1}};\overrightarrow{a_{2}} ightbrack
= ( - 8;3; - 7)

    Vậy phương trình tham số của \Delta\left\{ \begin{matrix}
x = 2 - 8t \\
y = 3 + 3t \\
z = - 1 - 7t \\
\end{matrix} ight.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} = \frac{z -
2}{1}, mặt phẳng (P):x + y - 2z + 5
= 0A(1; - 1;2). Đường thẳng \Delta cắt d(P) lần lượt tại MN sao cho A là trung điểm của đoạn thẳng MN. Phương trình đường thẳng \Delta là.

    Hướng dẫn:

    M \in d \Rightarrow M( - 1 + 2t;t;t +
2)

    A là trung điểm MN \Rightarrow N(3 - 2t; - 2 - t;2 -
t)

    N \in (P) \Rightarrow t = 2 \Rightarrow
M(3;2;4)

    \Delta đi qua điểm M(3;2;4) và có vectơ chỉ phương \overrightarrow{a_{\Delta}} = \overrightarrow{AM}
= (2;3;2)

    Vậy phương trình của \Delta\frac{x - 1}{2} = \frac{y + 1}{3} = \frac{z
- 2}{2}

  • Câu 20: Thông hiểu
    Tìm phương trình đường thẳng theo yêu cầu

    Trong không gian với hệ tọa độ  Oxyz,  cho hai mặt phẳng \left( \alpha  \right):x - 2y + 2z + 3 = 0\left( \beta  \right):3x - 5y - 2z - 1 = 0. Phương trình đường thẳng d đi qua điểm M(1;3;-1), song song với hai mặt phẳng đã cho là

    Hướng dẫn:

    \left( \alpha  ight) có vectơ chỉ phương \overrightarrow {{n_\alpha }}  = \left( {1; - 2;2} ight)

     \left( \beta  ight) có vectơ chỉ phương \overrightarrow {{n_\beta }}  = \left( {3; - 5; - 2} ight)

    d đi qua M và có vecto chỉ phương \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {14;8;1} ight)

    Vậy phương trình tham số của d là \left\{ \begin{matrix}
x = 1 + 14t \\
y = 3 + 8t \\
z = - 1 + t \\
\end{matrix} ight.\ .

  • Câu 21: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d':\frac{{x - 1}}{2} = \frac{{y + 3}}{1} = \frac{z}{2}. Phương trình đường thẳng  \Delta  đi qua điểm A(2;-1;-3) vuông góc với trục Oz và d là

    Hướng dẫn:

    Oz có vectơ chỉ phương \overrightarrow k  = \left( {0;0;1} ight)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( {2;1; - 2} ight)

     \Delta  đi qua điểm A và có vectơ chỉ phương là \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow k ;\overrightarrow {{a_d}} } ight] = \left( { - 1;2;0} ight)

    Vậy phương của \Delta\left\{ \begin{matrix}
x = 2 - t \\
y = - 1 + 2t \\
y = - 3 \\
\end{matrix} ight.

  • Câu 22: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz. Viết phương trình đường thẳng \Delta đi qua điểm A( - 2;2;1) cắt trục tung tại B sao cho OB
= 2OA.

    Hướng dẫn:

    B \in Oy \Rightarrow
B(0;b;0)

    OB = 2OA \Leftrightarrow \left\lbrack
\begin{matrix}
b = 6 \\
b = - 6 \\
\end{matrix} ight. \Rightarrow
\left\lbrack \begin{matrix}
B(0;6;0),\ \overrightarrow{AB} = (2;4; - 1) \\
B(0; - 6;0),\ \overrightarrow{AB} = (2; - 8; - 1) \\
\end{matrix} ight.

    \Delta đi qua điểm B và có vectơ chỉ phương \overrightarrow{AB}

    Vậy phương trình của \Delta\frac{x}{2} = \frac{y - 6}{4} = \frac{z}{-
1}\frac{x}{2} = \frac{y + 6}{-
8} = \frac{z}{- 1}.

  • Câu 23: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2; - 1) và đường thẳng d:\frac{x - 3}{1} = \frac{y - 3}{3} =
\frac{z}{2}. Phương trình đường thẳng đi qua điểm A, cắt d và song song với mặt phẳng (Q):x + y - z + 3 = 0 là:

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi B = \Delta \cap d

    \begin{matrix}
B \in d \Rightarrow B(3 + t;3 + 3t;2t) \\
\overrightarrow{AB} = (t + 2;3t + 1;2t + 1) \\
\end{matrix}

    (Q) có vectơ pháp tuyến \overrightarrow{n_{Q}} = (1;1 - 1)

    \begin{matrix}
\Delta//(Q) \Rightarrow \overrightarrow{AB}\bot\overrightarrow{n_{Q}} \\
\ \ \ \ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{n_{Q}} = 0 \\
\ \ \ \ \ \ \ \ \ \ \ \  \Leftrightarrow t = - 1 \\
\end{matrix}

    \Delta đi qua điểm A(1;2; - 1) và có vectơ chỉ phương \overrightarrow{AB} = (1; - 2; - 1)

    Vậy phương trình của \Delta\frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z + 1}{- 1}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (4%):
    2/3
  • Thông hiểu (83%):
    2/3
  • Vận dụng (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm