Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm đúng sai Ứng dụng đạo hàm để khảo sát và vẽ đồ thị (Phần 1)

Ứng dụng đạo hàm trong khảo sát và vẽ đồ thị - Bài tập đúng sai

Khảo sát và vẽ đồ thị hàm số bằng đạo hàm là một trong những chuyên đề quan trọng của chương trình Toán 12, thường xuyên xuất hiện trong các đề thi tốt nghiệp THPT. Trong bài viết này – Trắc nghiệm đúng sai Ứng dụng đạo hàm để khảo sát và vẽ đồ thị (Phần 1) – bạn sẽ được luyện tập thông qua các câu hỏi trắc nghiệm đúng sai có lời giải chi tiết. Đây là dạng bài vừa giúp củng cố lý thuyết, vừa giúp học sinh rèn luyện kỹ năng phân tích nhanh, chính xác. Bài viết kèm theo đáp án để các bạn tự kiểm tra và nâng cao hiệu quả học tập.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 18 câu
  • Điểm số bài kiểm tra: 18 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty;0)(3; + \infty).

    b) Hàm số y = f(x) nghịch biến trên khoảng (0;3).

    c) Hàm số y = f(x)đạt cực đại tại x = 0.

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4.

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = 2^{x^{2} - 3x +
\frac{13}{4}}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số nghịch biến trên khoảng ( - 1;\
0). Đúng||Sai

    b) Hàm số đồng biến trên khoảng (0;\
1). Sai||Đúng

    c) Hàm số có giá trị cực tiểu y_{CT} =
2. Đúng||Sai

    d) Hàm số có 2 điểm cực trị. Sai||Đúng

    Đáp án là:

    Cho hàm số y = 2^{x^{2} - 3x +
\frac{13}{4}}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số nghịch biến trên khoảng ( - 1;\
0). Đúng||Sai

    b) Hàm số đồng biến trên khoảng (0;\
1). Sai||Đúng

    c) Hàm số có giá trị cực tiểu y_{CT} =
2. Đúng||Sai

    d) Hàm số có 2 điểm cực trị. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    y = f(x) = 2^{x^{2} - 3x +
\frac{13}{4}}.

    Tập xác định: D\mathbb{= R}.

    Ta có y' = (2x - 3).2^{x^{2} - 3x +\frac{13}{4}}.ln2\ ;y' = 0 \Leftrightarrow x = \frac{3}{2} \in D;f\left( \frac{3}{2} \right) = 2.

    Bảng biến thiên của hàm số y = 2^{x^{2} -
3x + 2}

    Từ bảng biến thiên ta có: Các mệnh đề a) và c) đúng.

    Các mệnh đề b) và d) sai.

  • Câu 3: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty;0)(3; + \infty).

    b) Hàm số y = f(x) nghịch biến trên khoảng (0;3).

    c) Hàm số y = f(x)đạt cực đại tại x = 0.

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

    Tập xác định: D\mathbb{=
R}\backslash\left\{ 1 \right\}.

    y' = f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3
\end{matrix} \right..

    Bảng biến thiên:

    A graph with arrows and numbersDescription automatically generated with medium confidence

    a) Từ bảng biến thiên suy ra mệnh đề sai.

    b) Mệnh đề đúng.

    c) Hàm số chỉ có hai điểm cực trị là x =
- 1x = 3. Vậy mệnh đề sai.

    d) Do hàm số không xác định tại x =
1 thuộc ( - 1;3) nên mệnh đề sai.

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{2x^{2} + 5x}{x +
3} có đồ thị (C). Các khẳng định sau đúng hay sai?

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ 3 \right\}. Sai||Đúng

    b) Hàm số có hai cực trị có tổng hoành độ của cực trị bằng - 6. Đúng||Sai

    c) Đồ thị hàm số có tiệm cận ngang y = -
3. Sai||Đúng

    d) Khoảng cách từ điểm M(2;1) đến đường tiệm cận xiên của đồ thị (C) bằng \frac{4\sqrt{5}}{5}. Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{2x^{2} + 5x}{x +
3} có đồ thị (C). Các khẳng định sau đúng hay sai?

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ 3 \right\}. Sai||Đúng

    b) Hàm số có hai cực trị có tổng hoành độ của cực trị bằng - 6. Đúng||Sai

    c) Đồ thị hàm số có tiệm cận ngang y = -
3. Sai||Đúng

    d) Khoảng cách từ điểm M(2;1) đến đường tiệm cận xiên của đồ thị (C) bằng \frac{4\sqrt{5}}{5}. Sai||Đúng

    a) Sai: Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 \right\}.

    b) Đúng: Ta có y = \frac{2x^{2} + 5x}{x +
3} = 2x - 1 + \frac{3}{x + 3}.

    y' = 2 - \frac{3}{(x +
3)^{2}}

    y' = 0 \Leftrightarrow 2 -
\frac{3}{(x + 3)^{2}} = 0

    \Leftrightarrow \frac{2x^{2} + 12x + 15}{(x +
3)^{2}} = 0

    \Leftrightarrow 2x^{2}
+ 12x + 15 = 0 có hai nghiệm phân biệt.

    Vậy hàm số có hai cực trị có tổng hoành độ của cực trị bằng \frac{- 12}{2} = - 6.

    c) Sai: \lim_{x \rightarrow +
\infty}\frac{2x^{2} + 5x}{x + 3} = + \infty,\ \ \lim_{x \rightarrow -
\infty}\frac{2x^{2} + 5x}{x + 3} = - \infty, nên đồ thị hàm số không có tiệm cận ngang.

    d) Sai:

    Ta có \lim_{x \rightarrow +
\infty}\left\lbrack y - (2x - 1) \right\rbrack = \lim_{x \rightarrow +
\infty}\frac{3}{x + 3} = 0; \lim_{x
\rightarrow - \infty}\left\lbrack y - (2x - 1) \right\rbrack = \lim_{x
\rightarrow - \infty}\frac{3}{x + 3} = 0.

    Đồ thị hàm số có tiệm cận xiên là y = 2x
- 1 \Leftrightarrow 2x - y - 1 = 0\ \ \ (\Delta).

    Khoảng cách từ điểm M(2;1) đến \Deltad(M,\Delta) = \frac{|2.2 - 1 - 1|}{\sqrt{2^{2} + (
- 1)^{2}}} = \frac{2\sqrt{5}}{5}.

  • Câu 6: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = 2x^{3} + 2(m + 1)x^{2}
+ 6x + 4 + 2m, với m là tham số. Các nhận định dưới đây đúng hay sai?

    a) Khi m = - 1 thì hàm số đồng biến trên khoảng ( - \infty;\  +
\infty). Đúng||Sai

    b) Khi m = 1 thì hàm số không có cực trị. Đúng||Sai

    c) Có 3 giá trị nguyên dương của tham số m để hàm số đồng biến trên ( - \infty;\  + \infty). Sai||Đúng

    d) Hàm số đạt cực tiểu tại x = 2 khi đó m \in (2;\ 5). Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = 2x^{3} + 2(m + 1)x^{2}
+ 6x + 4 + 2m, với m là tham số. Các nhận định dưới đây đúng hay sai?

    a) Khi m = - 1 thì hàm số đồng biến trên khoảng ( - \infty;\  +
\infty). Đúng||Sai

    b) Khi m = 1 thì hàm số không có cực trị. Đúng||Sai

    c) Có 3 giá trị nguyên dương của tham số m để hàm số đồng biến trên ( - \infty;\  + \infty). Sai||Đúng

    d) Hàm số đạt cực tiểu tại x = 2 khi đó m \in (2;\ 5). Sai||Đúng

    a) Khi m = - 1 thì f(x) = 2x^{3} + 6x + 2 có đạo hàm f'(x) = 6x^{2} + 6 > 0, \forall x\mathbb{\in R}. Do đó, hàm số đồng biến trên ( - \infty;\  +
\infty). Suy ra khẳng định đúng.

    b) Khi m = 1 thì f(x) = 2x^{3} + 4x^{2} + 6x + 6 có đạo hàm f'(x) = 6x^{2} + 8x +
6.

    f'(x) = 0 vô nghiệm nên hàm số không có cực trị. Suy ra khẳng định đúng.

    c) Ta có f'(x) = 6x^{2} + 4(m + 1)x +
6

    Hàm số f(x) đồng biến trên ( - \infty;\  + \infty) khi và chỉ khi f'(x) \geq 0, \forall x\mathbb{\in R}

    \Leftrightarrow 6x^{2} + 4(m + 1)x + 6
\geq 0, \forall x\mathbb{\in
R}

    \Leftrightarrow 4(m + 1)^{2} - 36 \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
m \leq - 4 \\
m \geq 2
\end{matrix} \right..

    Suy ra khẳng định sai.

    d) Vì x = 2 là điểm cực trị của hàm số f(x) nên f'(2) = 0

    \Leftrightarrow 30 + 8(m + 1) = 0
\Leftrightarrow m = - \frac{19}{4}.

    Thay m = - \frac{19}{4} vào hàm số f(x) ta được f(x) = 2x^{3} - \frac{15}{2}x^{2} + 6x -
\frac{11}{2}.

    Dựa vào bảng biến thiên của hàm số f(x) ta nhận thấy hàm số có điểm cực tiểu là x = 2. Vậy m = - \frac{19}{4} thoả mãn yêu cầu bài toán và - \frac{19}{4} \notin (2;\
5). Suy ra khẳng định sai

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{2x^{2} - x +
4}{x - 1} có đồ thị (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}. Đúng||Sai

    b) Tiệm cận xiên của đồ thị (C)là đường thẳng y = 2x + 1. Đúng||Sai

    c) Điểm I(1;2) là tâm đối xứng của đồ thị(C). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} - x +
4}{x - 1} có đồ thị (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}. Đúng||Sai

    b) Tiệm cận xiên của đồ thị (C)là đường thẳng y = 2x + 1. Đúng||Sai

    c) Điểm I(1;2) là tâm đối xứng của đồ thị(C). Sai||Đúng

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}suy ra mệnh đề đúng.

    b) Ta cóy = f(x) = \frac{2x^{2} - x +
4}{x - 1} = 2x + 1 + \frac{5}{x - 1}

    \lim_{x \rightarrow +
\infty}\left\lbrack y - (2x + 1) \right\rbrack = \lim_{x \rightarrow +
\infty}\frac{5}{x - 1} = 0

    Do đó đường thẳng y = 2x + 1là tiệm cận xiên của đồ thị suy ra mệnh đề đúng.

    c) Đồ thị hàm số nhận x = 1 làm tiệm cận đứng.

    Tọa độ giao điểm của hai đường tiệm cận là I(1;3). Do đó I(1;3)là tâm đối xứng của (C) suy ra mệnh đề sai.

  • Câu 8: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình dưới đây

    Xét tính đúng sai của các nhận định sau:

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty\ ;\ 0). Sai||Đúng

    b) Hàm số  y = f(x)  đồng biến trên khoảng ( - 1\ ;\ 1). Đúng||Sai

    c) Hàm số y = f(x) nghịch biến trên khoảng ( - \infty\ ;\ 0). Sai||Đúng

    d) Hàm số y = f(x) nghịch biến trên khoảng (1\ ;\ 2). Đúng||Sai

    Đáp án là:

    Cho hàm số bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình dưới đây

    Xét tính đúng sai của các nhận định sau:

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty\ ;\ 0). Sai||Đúng

    b) Hàm số  y = f(x)  đồng biến trên khoảng ( - 1\ ;\ 1). Đúng||Sai

    c) Hàm số y = f(x) nghịch biến trên khoảng ( - \infty\ ;\ 0). Sai||Đúng

    d) Hàm số y = f(x) nghịch biến trên khoảng (1\ ;\ 2). Đúng||Sai

    a) Saib) Đúngc) Said) Đúng

    a) Sai, vì dựa vào đồ thị thì f'(x)
> 0 \forall x \in ( - 1\ ;\ 1)
\cup (2\ ;\  + \infty).

    b) Đúng, vì dựa vào đồ thị thì f'(x)
> 0 \forall x \in ( - 1\ ;\
1).

    c) Sai, vì dựa vào đồ thị thì f'(x)
< 0 \forall x \in ( - \infty\
;\  - 1) \cup (1\ ;\ 2).

    d) Đúng, vì dựa vào đồ thị thì f'(x)
< 0 \forall x \in (1\ ;\
2).

  • Câu 9: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{1}{3}x^{3} + (m +
1)x^{2} + \left( m^{2} + 2m \right)x - 3, với m là tham số. Các nhận định dưới đây là đúng hay sai?

    a) Với mọi m hàm số luôn có hai điểm cực trị. Đúng||Sai

    b) Hàm số luôn nghịch biến trên khoảng có độ dài bằng 2. Đúng||Sai

    c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}. Đúng||Sai

    d) Hàm số nghịch biến trên ( - 1;\
1) khi và chỉ khi m \geq -
1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{1}{3}x^{3} + (m +
1)x^{2} + \left( m^{2} + 2m \right)x - 3, với m là tham số. Các nhận định dưới đây là đúng hay sai?

    a) Với mọi m hàm số luôn có hai điểm cực trị. Đúng||Sai

    b) Hàm số luôn nghịch biến trên khoảng có độ dài bằng 2. Đúng||Sai

    c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}. Đúng||Sai

    d) Hàm số nghịch biến trên ( - 1;\
1) khi và chỉ khi m \geq -
1. Sai||Đúng

    a) Đúng: Ta có y' = x^{2} + 2(m + 1)x
+ m^{2} + 2m.

    Do \Delta' = {b'}^{2} - ac = (m +
1)^{2} - \left( m^{2} + 2m \right) = 1 > 0 nên phương trình có hai nghiệm phân biệt

    Nên hàm số luôn có hai điểm cực trị.

    b) Đúng: Ta có y' = x^{2} + 2(m + 1)x
+ m^{2} + 2m.

    Do \Delta' = {b'}^{2} - ac = (m +
1)^{2} - \left( m^{2} + 2m \right) = 1 > 0 nên phương trình có hai nghiệm phân biệt x_{1} = - mx_{2} = - m - 2.

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Hàm số luôn nghịch biến trên khoảng ( - m
- 2; - m).

    Ta có: - m - ( - m - 2) = 2

    c) Đúng: Ta có bảng biến thiên

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Từ bảng biến thiên, suy ra không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}.

    d) Sai: Bảng biến thiên

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Từ bảng biến thiên, suy ra hàm số nghịch biến trên khoảng ( - 1;\ 1) khi và chỉ khi

    \left\{ \begin{matrix}
- m - 2 \leq - 1 \\
- m \geq 1
\end{matrix} \right.\  \Leftrightarrow m = - 1

    .

  • Câu 10: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Điều kiện xác định: x^{2} - 4x + 5
> 0 .

    Vậy hàm số có tập xác định là D\mathbb{=
R}.

    b) Ta có y' = \frac{2x - 4}{\left(
x^{2} - 4x + 5 \right)ln2}.

    Do y' > 0 \Leftrightarrow x >
2 nên hàm số đồng biến trên khoảng (2\ ;\  + \infty).

    c) Ta có bảng biến thiên

    Suy ra hàm số đạt cực tiểu tại x =
2.

    d) Đồ thị hàm số (C) có điểm cực tiểu là M(2\ ;\ 0) và cắt đường thẳng (d):y = 1 tại hai điểm A\left( x_{1};1 \right),\ \ B\left( x_{2};1
\right) với x_{1},\ x_{2} là nghiệm của phương trình:

    log_{2}\left( x^{2} - 4x + 5 \right) = 1
\Leftrightarrow x^{2} - 4x + 5 = 2

    \Leftrightarrow x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3
\end{matrix} \right.

    \Rightarrow A(1;1),\ \
B(3;1).

    Khi đó \overrightarrow{MA} = ( - 1\ ;\
1),\ \overrightarrow{MB} = (1\ ;\ 1) \Rightarrow
\overrightarrow{MA}.\overrightarrow{MB} = 0.

    Suy ra tam giác MAB vuông tại M.

    Do đó, bán kính đường tròn ngoại tiếp tam giác MABR =
\frac{AB}{2} = 1.

  • Câu 11: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 2mx + m +
2}{x - m}, với m là tham số. Các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ m \right\}. Đúng||Sai

    b) Có bốn giá trị nguyên của tham số m để hàm số có hai điểm cực trị. Sai||Đúng

    c) Hàm số đạt cực đại tại x = -
1 khi m = \frac{1}{2}. Đúng||Sai

    d) Khi đồ thị hàm số có hai điểm cực trị thì đường thẳng đi qua hai điểm cực trị của đồ thị hàm số có phương trình y = 2x - 2m. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 2mx + m +
2}{x - m}, với m là tham số. Các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ m \right\}. Đúng||Sai

    b) Có bốn giá trị nguyên của tham số m để hàm số có hai điểm cực trị. Sai||Đúng

    c) Hàm số đạt cực đại tại x = -
1 khi m = \frac{1}{2}. Đúng||Sai

    d) Khi đồ thị hàm số có hai điểm cực trị thì đường thẳng đi qua hai điểm cực trị của đồ thị hàm số có phương trình y = 2x - 2m. Đúng||Sai

    a) Hàm số xác định khi x - m \neq 0
\Leftrightarrow x \neq m nên tập xác định là D\mathbb{= R}\backslash\left\{ m
\right\}. Suy ra mệnh đề đúng.

    b) Đạo hàm y' = \frac{x^{2} - 2mx +
2m^{2} - m - 2}{(x - m)^{2}}.

    Để hàm số có hai điểm cực trị thì y'
= 0 có hai nghiệm phân biệt khác m hay g(x) =
x^{2} - 2mx + 2m^{2} - m - 2 có hai ngiệm phân biệt khác m.

    \left\{ \begin{matrix}
\Delta' > 0 \\
g(m) \neq 0
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
- m^{2} + m + 2 > 0 \\
m^{2} - m - 2 \neq 0
\end{matrix} \right.

    \Leftrightarrow m \in ( - 1;\
2)

    m nguyên nên m = \left\{ 0;\ 1 \right\} nên có hai giá trị nguyên của tham số m thoả mãn. Suy ra mệnh đề sai.

    c) Hàm số đạt cực trị tại x = -
1 thì y^{'( - 1)} =
0

    \Leftrightarrow 2m^{2} + m - 1 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = \frac{1}{2}
\end{matrix} \right.

    Thử lại với m = \frac{1}{2} thì y' = \frac{x^{2} - x - 2}{x -
\frac{1}{2}} và có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated with medium confidence

    Vậy với m = \frac{1}{2} thoả mãn yêu cầu bài toán. Suy ra mệnh đề đúng.

    d) Cho hàm số y =
\frac{u(x)}{v(x)}. Nếu hàm số có hai điểm cực trị thì phương trình đường thẳng đi qua hai điểm cực trị có dạng y = \frac{u'(x)}{v'(x)}.

    Áp dụng vào bài toán ta được y =
\frac{\left( x^{2} - 2mx + m + 2 \right)'}{(x - m)'} = 2x -
2m. Suy ra mệnh đề đúng.

  • Câu 12: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{nx + 1}{x^{2}
+ 3mx + 2n^{2}} có đồ thị có hình vẽ như hình dưới đây

    Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Đúng||Sai

    b) Đồ thị hàm số có 2 tiệm cận đứng. Đúng||Sai

    c) Đồ thị hàm số y =
\frac{1}{f(x)} không có tiệm cận đứng. Đúng||Sai

    d) Với \left\{ \begin{matrix}
m = 1 \\
n = - 1
\end{matrix} \right.thì hàm số có đồ thị như hình vẽ. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{nx + 1}{x^{2}
+ 3mx + 2n^{2}} có đồ thị có hình vẽ như hình dưới đây

    Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Đúng||Sai

    b) Đồ thị hàm số có 2 tiệm cận đứng. Đúng||Sai

    c) Đồ thị hàm số y =
\frac{1}{f(x)} không có tiệm cận đứng. Đúng||Sai

    d) Với \left\{ \begin{matrix}
m = 1 \\
n = - 1
\end{matrix} \right.thì hàm số có đồ thị như hình vẽ. Đúng||Sai

    Lời giải chi tiết bài toán, giải chi tiết từng ý

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Mệnh đề đúng.

    b) Ta có \lim_{x \rightarrow 1^{+}}f(x) =
- \infty nên x = 1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x \rightarrow 2^{-}}f(x) = -
\infty nên x = 2 là tiệm cận đứng của đồ thị hàm số.

    suy ra mệnh đề đúng.

    c) Từ đồ thị hàm số ta có phương trình f(x) = 0 vô nghiệm nên hàm số y = \frac{1}{f(x)} không có tiệm cận đứng. Suy ra mệnh đề đúng.

    d) Từ đồ thị hàm số ta có hai tiệm cận đứng là x = 1x =
2, khi đó x = 1x = 2 là nghiệm bậc nhất của mẫu nhưng không là nghiệm của tử.

    Do đó ta có

    \left\{ \begin{matrix}
1 + 3m + 2n^{2} = 0 \\
4 + 6m + 2n^{2} = 0 \\
n + 1 \neq 0 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
3m + 2n^{2} = - 1 \\
6m + 2n^{2} = - 4 \\
n + 1 \neq 0 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
m = - 1 \\
n = \pm 1 \\
n \neq - 1 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
m = - 1 \\
n = 1
\end{matrix} \right.. Suy ra mệnh đề đúng

  • Câu 13: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    a) Đúng.

    b) Sai. Vì không đủ cơ sở để xác định hàm số f(x) nên không xác định được giá trị cực tiểu.

    c) Sai.

    Ta có: \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 2xf'\left( x^{2} \right) = 2x\left( x^{2} + 1
\right)e^{x^{2}}

    \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 0 \Leftrightarrow x = 0

    Do đó, hàm số nghịch biến trên ( - 1;\
0).

    d) Sai.

    Ta có:

    g'(x) = \frac{1}{x}f'\left( \ln x
\right) - 2mx + 4m

    = \frac{1}{x}\left( \ln x + 1
\right)e^{\ln x} - 2mx + 4m = \ln x + 1 - 2mx + 4m

    Hàm số nghịch biến trong khoảng \left(
e;\ e^{2024} \right) khi và chỉ khi \ln x + 1 - mx + 4m \leq 0,\forall x \in \left(
e;\ e^{2024} \right)

    \Leftrightarrow 2m \geq \frac{\ln x +
1}{x - 2},\forall x \in \left( e;\ e^{2024} \right).

    Xét hàm số g(x) = \frac{\ln x + 1}{x -
2},x \in \left( e;\ e^{2024} \right)

    Ta có g'(x) = \frac{\frac{1}{x}(x +
1) - \ln x - 1}{(x - 2)^{2}} =
\frac{1 - x\ln x}{x(x - 2)^{2}},x \in \left( e;\ e^{2024}
\right)

    g'(x) < 0,\forall x \in \left(
e;\ e^{2024} \right)

    Bảng biến thiên:

    Ảnh có chứa hàng, ảnh chụp màn hình, biểu đồ, biên laiMô tả được tạo tự động

    Quan sát bảng biến thiên ta có 2m \geq
\frac{2}{e - 2} \Leftrightarrow m \geq \frac{1}{e - 2} \Rightarrow m
\geq 2.

    Do m \in \lbrack - 2024;\
2025\rbrack, m\mathbb{\in
Z} nên m \in \left\{ 2;\ 3;\ ...\
;\ 2025 \right\}.

    Vậy có 2024 giá trị nguyên của tham số m.

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty; - 1)(1; + \infty).

    b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1. Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 - 1 = 2.

    c) Hàm số y = f(x) có hai cực trị là x = \pm 1.

    d) Gọi d:y = ax + b là đường thẳng qua hai điểm cực trị A( - 1;3),B(1; -
1).

    A,B \in d \Rightarrow \left\{\begin{matrix}- a + b = 3 \\a + b = - 1\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}a = - 2 \\b = 1\end{matrix} \right.\  \Rightarrow d:y = - 2x + 1

  • Câu 15: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc bốn trùng phương f(x) có bảng biến thiên như sau:

    A math problem with numbers and linesDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số đồng biến trên ( - 1;\
1). Sai||Đúng

    b) Độ dài đoạn thẳng nối hai điểm cực tiểu là 2. Đúng||Sai

    c) Hàm số f(2x) nghịch biến trên (0;\ 1). Sai||Đúng

    d) Số điểm cực trị của hàm số y =
\frac{1}{x^{4}}\left\lbrack f(x) - 1 \right\rbrack^{4} là 5. Đúng||Sai

    Đáp án là:

    Cho hàm số bậc bốn trùng phương f(x) có bảng biến thiên như sau:

    A math problem with numbers and linesDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số đồng biến trên ( - 1;\
1). Sai||Đúng

    b) Độ dài đoạn thẳng nối hai điểm cực tiểu là 2. Đúng||Sai

    c) Hàm số f(2x) nghịch biến trên (0;\ 1). Sai||Đúng

    d) Số điểm cực trị của hàm số y =
\frac{1}{x^{4}}\left\lbrack f(x) - 1 \right\rbrack^{4} là 5. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai. Vì hàm số nghịch biến trên (0;\
1).

    b) Đúng.

    Ta có: hai điểm cực tiểu lần lượt có tọa độ ( - 1;\  - 1)(1;\  - 1).

    Do đó độ dài nối 2 điểm cực tiểu là \sqrt{(1 + 1)^{2} + ( - 1 + 1)^{2}} =
2.

    c) Sai.

    Ta có:

    \left\lbrack f(2x)
\right\rbrack' = 2f'(2x)

    \left\lbrack f(2x) \right\rbrack' =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{- 1}{2} \\
x = 0 \\
x = \frac{1}{2}
\end{matrix} \right.

    Do đó, hàm số đồng biến trên \left(
\frac{1}{2};\ 1 \right).

    d) Đúng.

    Giả sử f(x) = ax^{4} + bx^{2} +
c.

    Từ \left\{ \begin{matrix}
f'(0) = 0 \\
f(0) = 1 \\
f'( \pm 1) = 0 \\
f( \pm 1) = 0
\end{matrix} \right.\  \leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
c = 1
\end{matrix} \right..

    Suy ra f(x) = 2x^{4} - 4x^{2} +
1.

    Khi đó y = \frac{1}{x^{4}}\left\lbrack
2x^{4} - 4x^{2} \right\rbrack^{4} = 2^{4}x^{4}(x^{2} -
2)^{4}.

    y' = 2^{4}.4.x^{3}.(x^{2} -
2)^{3}.(3x^{2} - 2).

    y' = 0 \Leftrightarrow x =
0 ; x = \pm \sqrt{2} ; x = \pm \sqrt{\frac{2}{3}}

    Do đó, hàm số y5 cực trị.

  • Câu 16: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho đồ thị hàm số như hình 1 và hình 2. Các mệnh đề sau đúng hay sai?

    a) Hàm số có đồ thị là hình 1 có hai điểm cực trị. Đúng||Sai

    b) Khoảng cách giữa hai điểm cực trị của đồ thị hàm số ở hình 1 bằng \sqrt{5}. Sai||Đúng

    c) Hình 1 là đồ thị của hàm số y = (x -
1)\left( x^{2} - 2x - 2 \right). Đúng||Sai

    d) Hình 2 là đồ thị của hàm số y =
|x|^{3} - 3x^{2} + 2. Sai||Đúng

    Đáp án là:

    Cho đồ thị hàm số như hình 1 và hình 2. Các mệnh đề sau đúng hay sai?

    a) Hàm số có đồ thị là hình 1 có hai điểm cực trị. Đúng||Sai

    b) Khoảng cách giữa hai điểm cực trị của đồ thị hàm số ở hình 1 bằng \sqrt{5}. Sai||Đúng

    c) Hình 1 là đồ thị của hàm số y = (x -
1)\left( x^{2} - 2x - 2 \right). Đúng||Sai

    d) Hình 2 là đồ thị của hàm số y =
|x|^{3} - 3x^{2} + 2. Sai||Đúng

    a) Hàm số có đồ thị là hình 1 có hai điểm cực trị, suy ra mệnh đề đúng.

    b) Từ đồ thị hình 1, ta có hai điểm cực trị là A\ (0\ ;\ 2)\ \ ,\ \ \ B\ (2\ ;\  - 2). Khoảng cách giữa hai điểm cực trị là AB =
\sqrt{(2 - 0)^{2} + ( - 2 - 2)^{2}} = 2\sqrt{5}, suy ra mệnh đề sai.

    c) Xét hàm số y = (x - 1)\left( x^{2} -
2x - 2 \right) = x^{3} - 3x^{2} + 2y' = 3x^{2} - 6x

    y' = 0 \Leftrightarrow 3x^{2} - 6x =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2
\end{matrix} \right.

    Bảng biến thiên

    Từ bảng biến thiên, đối chiếu với đồ thị hình 1. Ta thấy đồ thị hình 1 là đồ thị của hàm số y = x^{3} - 3x^{2} +
2, suy ra mệnh đề đúng.

    d) Từ đồ thị hình 1 sang hình 2 ta thấy:

    + Toàn bộ đồ thị của hình 1 nằm phía trên trục Ox được giữ nguyên ở hình 2.

    + Và phần đồ thị ở phía dưới trục Ox ở hình 1 được lấy đối xứng qua trục Oxở hình 2.

    Từ đó suy ra đồ thị hình 2 chính là đồ thị của hàm số y = \left| x^{3} - 3x^{2} + 2 \right|, suy ra mệnh đề sai.

  • Câu 17: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    Đáp án là:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    a) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;50\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0 \Leftrightarrow
- 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow t \approx 18

    Ta có:

    h(0) = 250;h(18) = 8,08;h(50) =
250

    Do đó, \min_{\lbrack 0;50\rbrack}h(t) =
8,08 tại t \approx 18.

    Vậy tại thời điểm t \approx
18giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Suy ra mệnh đề đúng.

    b) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;70\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0
\Leftrightarrow - 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t \approx 18 \\
t \approx 55
\end{matrix} \right.

    Bảng biến thiên của hàm số h như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 1)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Suy ra mệnh đề đúng.

    c) Sai. Ta có v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 ≤ t ≤ 50.

    Khi đó v(t) = h'(t) = - 0,03t^{2} +
2,2t - 30 với t \in \lbrack
0;50\rbrack

    v(25) = - 0,03.25^{2} + 2,2.25 - 30 =
6,25. Suy ra mệnh đề sai.

    d) Sai. Tại thời điểm t = 25 , lúc đó t \in \lbrack 18;55\rbrack, căn cứ vào bảng biến thiên ở câu b), ta thấy rằng h'(t) > 0, tức là v(t) > 0, vậy vận tốc tức thời của con tàu đang tăng trở lại.

    Suy ra mệnh đề sai.

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    a) Hàm số xác định khi x + 2 \neq 0
\Leftrightarrow x \neq - 2. Tập xác định D = \mathbb{R}\backslash\left\{ - 2
\right\}.

    Do đó mệnh đề đúng.

    b) Ta có: \lim_{x \rightarrow + \infty}y
= \lim_{x \rightarrow + \infty}\frac{x^{2} - 3x + 1}{x + 2} = +
\infty\lim_{x \rightarrow -
\infty}y = \lim_{x \rightarrow - \infty}\frac{x^{2} - 3x + 1}{x + 2} = -
\infty.

    Suy ra đồ thị hàm số không có tiệm cận ngang. Do đó mệnh đề sai.

    c) Ta có \lim_{x \rightarrow +
\infty}\left\lbrack \frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack
= 0

    \lim_{x \rightarrow - \infty}\left\lbrack
\frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack = 0

    Vậy đồ thị có đường tiệm cận xiên là y =
x - 5. Do đó mệnh đề đúng.

    d) Đường tiệm cận xiên y = x - 5 cắt hai trục tọa độ O\ x,Oy lần lượt tại A(5;0);\ B(0; - 5).

    Tam giác OAB vuông tại O, có

    OA = \left| \overrightarrow{OA} \right| =
\sqrt{5^{2} + 0^{2}} = 5

    OB = \left| \overrightarrow{OB} \right| =
\sqrt{0^{2} + ( - 5)^{2}} = 5.

    Diện tích tam giác OAB bằng: \frac{1}{2}.OA.OB = \frac{1}{2}.5.5 =
\frac{25}{2}. Do đó mệnh đề đúng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (17%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (33%):
    2/3
  • Vận dụng cao (17%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm