Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm đúng sai Ứng dụng đạo hàm để khảo sát và vẽ đồ thị (Phần 2)

Ứng dụng đạo hàm trong khảo sát và vẽ đồ thị hàm số lớp 12

Tiếp nối phần 1, bài viết này tiếp tục mang đến cho bạn những câu hỏi trắc nghiệm đúng sai Toán 12 tập trung vào ứng dụng đạo hàm trong khảo sát và vẽ đồ thị hàm số. Đây là phần kiến thức nền tảng, giúp học sinh nhận diện nhanh các đặc điểm quan trọng của đồ thị, từ đó áp dụng hiệu quả trong giải bài tập và làm bài thi THPT Quốc gia. Với hệ thống câu hỏi đa dạng, có đáp án rõ ràng và phân tích hợp lý, bạn sẽ dễ dàng rèn luyện tư duy, tránh sai sót và nâng cao kỹ năng giải toán trắc nghiệm một cách chính xác và nhanh chóng.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = \frac{x^{2} - 2x + 6}{-
x - 1}. Các mệnh đề sau đúng hay sai?

    a) Hàm số f(x) có tập xác định là \mathbb{R}. Sai||Đúng

    b) Hàm số f(x) có đạo hàm f'(x) = \frac{x^{2} + 2x - 8}{(x +
1)^{2}}. Sai||Đúng

    c) Hàm số f(x) có giá trị cực đại bằng 2. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \frac{x^{2} - 2x + 6}{-
x - 1}. Các mệnh đề sau đúng hay sai?

    a) Hàm số f(x) có tập xác định là \mathbb{R}. Sai||Đúng

    b) Hàm số f(x) có đạo hàm f'(x) = \frac{x^{2} + 2x - 8}{(x +
1)^{2}}. Sai||Đúng

    c) Hàm số f(x) có giá trị cực đại bằng 2. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Đúng||Sai

    a) Sai.Hàm số f(x) = \frac{x^{2} - 2x +
6}{- x - 1} xác định khi - x - 1
\neq 0 \Leftrightarrow x \neq - 1.

    Do đó hàm số f(x) có tập xác định là \mathbb{R}\backslash\left\{ - 1
\right\}. Suy ra mệnh đề sai.

    b) Sai. Ta có: f'(x) = \frac{\left(
x^{2} - 2x + 6 \right)'( - x - 1) - \left( x^{2} - 2x + 6 \right)( -
x - 1)'}{(x + 1)^{2}} = \frac{- x^{2} - 2x + 8}{(x +
1)^{2}}.

    Suy ra mệnh đề sai.

    c) Đúng. f^{'(x)} = 0 \Leftrightarrow\frac{- x^{2} - 2x + 8}{(x + 1)^{2}} = 0.

    Bảng biến thiên:

    Vậy hàm số f(x) có giá trị cực đại bằng 2.

    Suy ra mệnh đề đúng.

    d) Đúng. Hàm số y = f\left( x^{2} - 2
\right) xác định khi x^{2} - 2 \neq
- 1 \Leftrightarrow x \neq \pm 1

    \Rightarrow Tập xác định D\mathbb{= R}\backslash\left\{ \pm 1
\right\}.

    y' = 2xf'\left( x^{2} - 2
\right).

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 \right) = 0
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = 2 \\
x^{2} - 2 = - 4
\end{matrix} \right.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} = 4 \\
x^{2} = - 2\ (VN)
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2;x = - 2
\end{matrix} \right.

    Bảng biến thiên:

    Vậy hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Suy ra mệnh đề đúng.

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các nhận định

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    Đáp án là:

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Dân số của quốc gia này ở năm 2030N(7)
= 100e^{0,012.7} \approx 108,8 triệu người.

    b) Dân số của quốc gia này ở năm 2035N(12)
= 100e^{0,012.12} \approx 115,5 triệu người.

    c) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm

    d) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm.

  • Câu 3: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} + 2x + 5}{x +
1}. Các khẳng định dưới đây đúng hay sai?

    a) y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}}. Đúng||Sai

    b) Phương trình đường thẳng đi qua hai điểm cực trị của hàm số là y = 2x - 2. Sai||Đúng

    c) Đồ thị hàm số có đường tiệm cận xiên là y = x + 1. Đúng||Sai

    d) Đồ thị của hàm số có hình vẽ như sau

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} + 2x + 5}{x +
1}. Các khẳng định dưới đây đúng hay sai?

    a) y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}}. Đúng||Sai

    b) Phương trình đường thẳng đi qua hai điểm cực trị của hàm số là y = 2x - 2. Sai||Đúng

    c) Đồ thị hàm số có đường tiệm cận xiên là y = x + 1. Đúng||Sai

    d) Đồ thị của hàm số có hình vẽ như sau

    Đúng||Sai

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

    a) ĐÚNG

    y' = \frac{\left( x^{2} + 2x + 5\right)'(x + 1) - (x + 1)'\left( x^{2} + 2x + 5 \right)}{(x +1)^{2}}

    = \frac{(2x + 2)(x + 1) - \left( x^{2} + 2x + 5 \right)}{(x +1)^{2}}= \frac{x^{2} + 2x - 3}{(x + 1)^{2}}.

    b) SAI

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 3
\end{matrix} \right.\  \Rightarrow Hàm số có hai điểm cực trị là A(1;4), B( - 3; - 4).

    Gọi phương trình đường thẳng qua hai điểm cực trị có dạng y = ax + b.

    Khi đó ta có hệ phương trình \left\{
\begin{matrix}
a + b = 4 \\
- 3a + b = - 4
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2
\end{matrix} \right..

    Phương trình đường thẳng ABy = 2x + 2.

    c) ĐÚNG

    y = x + 1 + \frac{4}{x + 1}

    \lim_{x \rightarrow \pm \infty}\left( y -
(x + 1) \right) = \lim_{x \rightarrow \pm \infty}\frac{4}{x + 1} = 0
\Rightarrow y = x + 1 là đường tiệm cận xiên của đồ thị hàm số.

    d) ĐÚNG

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) có đạo hàm f'(x) = - x(x - 2)^{2}(x - 3),\forall x\mathbb{\in R}. Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số có ba điểm cực trị. Sai||Đúng

    b) \min_{x \in ( - \infty;2)}f(x) =
f(0). Đúng||Sai

    c) \max_{x \in \lbrack 0;4\rbrack}f(x) =
f(3). Đúng||Sai

    d) \max_{}f\left( e^{x} + e^{- x} \right)
= f(3). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = - x(x - 2)^{2}(x - 3),\forall x\mathbb{\in R}. Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số có ba điểm cực trị. Sai||Đúng

    b) \min_{x \in ( - \infty;2)}f(x) =
f(0). Đúng||Sai

    c) \max_{x \in \lbrack 0;4\rbrack}f(x) =
f(3). Đúng||Sai

    d) \max_{}f\left( e^{x} + e^{- x} \right)
= f(3). Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Ta có f'(x) = - x(x - 2)^{2}(x - 3) =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
x = 3
\end{matrix} \right..

    BBT:

    Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0\ ;\ 4\rbrackf(3).

    d) Ta có: e^{x} + e^{- x} \geq
2\sqrt{e^{x}.e^{- x}} = 2\overset{}{\rightarrow}\max_{}f\left( e^{x} +
e^{- x} \right) = f(3).

  • Câu 5: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{2x^{2} + 2x - 1 -
5m}{x - m}. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số xác định với mọi x. Sai||Đúng

    b) Có 2019 giá trị nguyên dương bé hơn 2024 của tham số m để hàm số y
= \frac{2x^{2} + 2x - 1 - 5m}{x - m} nghịch biến trên khoảng (1;5). Đúng||Sai

    c) m = 0 thì hàm số có hai cực trị. Sai||Đúng

    d) Nếu đồ thị hàm số có hai điểm cực trị thì hai điểm cực trị đó luôn nằm trên đường thẳng cố định. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{2x^{2} + 2x - 1 -
5m}{x - m}. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số xác định với mọi x. Sai||Đúng

    b) Có 2019 giá trị nguyên dương bé hơn 2024 của tham số m để hàm số y
= \frac{2x^{2} + 2x - 1 - 5m}{x - m} nghịch biến trên khoảng (1;5). Đúng||Sai

    c) m = 0 thì hàm số có hai cực trị. Sai||Đúng

    d) Nếu đồ thị hàm số có hai điểm cực trị thì hai điểm cực trị đó luôn nằm trên đường thẳng cố định. Đúng||Sai

    a) Sai. Tập xác định D\mathbb{=
R}\backslash\left\{ m \right\}

    b) Đúng Tập xác định D\mathbb{=
R}\backslash\left\{ m \right\} và có y' = \frac{2x^{2} - 4mx + 3m + 1}{(x -
m)^{2}}.

    Hàm số nghịch biến trên khoảng (1;5)

    \Leftrightarrow y' = \frac{2x^{2} -4mx + 3m + 1}{(x - m)^{2}} \leq 0\forall x \in (1;5)

    \Leftrightarrow\left\{ \begin{matrix}2x^{2} - 4mx + 3m + 1 \leq 0\forall x \in (1;5) \\m \notin (1;5)\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
- m + 3 \leq 0 \\
- 17m + 51 \leq 0 \\
\left\lbrack \begin{matrix}
m \leq 1 \\
m \geq 5
\end{matrix} \right.\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m \geq 3 \\
\left\lbrack \begin{matrix}
m \leq 1 \\
m \geq 5
\end{matrix} \right.\
\end{matrix} \right.\  \Leftrightarrow m \geq 5

    Do nguyên dương bé hơn 2024 nên 5 \leq m\leq2023. Vậy có tất cả 2019 giá trị.

    c) Sai. Với m = 0 thì y' = \frac{2x^{2} + 1}{x^{2}} > 0\ \forall
x \neq 0

    Vậy hàm số không có cực trị với m =
0.

    d) Đúng. Giả sử đồ thị hàm số có hai điểm cực trị khi đó hai điểm cực trị hàm số luôn nằm trên đường thẳng y = 4x
+ 2

    Chú ý:

    Áp dụng tính chất: Nếu x_{0} là điểm cực trị của hàm số hữu tỷ y =
\frac{u(x)}{v(x)} thì giá trị cực trị tương ứng của hàm số là y_{0} = \frac{u\left( x_{0} \right)}{v\left(
x_{0} \right)} = \frac{u'\left( x_{0} \right)}{v'\left( x_{0}
\right)}.

    Suy ra với bài toán trên ta có phương trình đường thẳng qua hai điểm cực trị của đồ thị hàm số là y =
\frac{\left( 2x^{2} + 2x - 1 - 5m \right)'}{(x - m)'} = 4x +
2

  • Câu 6: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} - 3x + m^{2}
- 2. Các nhận định dưới đây đúng hay sai?

    a) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4 khi m =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số y =
f(2x) trên đoạn \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack bằng - 4 khi m =
0. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x +
1) trên đoạn \lbrack -
3;0\rbrack bằng 1 khi m = 1. Đúng||Sai

    d) Có 2024 giá trị của nguyên của m \in ( - 2023;2024) để giá trị nhỏ nhất của hàm số h(x) = f(1 -
3x) trên đoạn \lbrack -
2;0\rbrack nhỏ hơn 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - 3x + m^{2}
- 2. Các nhận định dưới đây đúng hay sai?

    a) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4 khi m =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số y =
f(2x) trên đoạn \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack bằng - 4 khi m =
0. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x +
1) trên đoạn \lbrack -
3;0\rbrack bằng 1 khi m = 1. Đúng||Sai

    d) Có 2024 giá trị của nguyên của m \in ( - 2023;2024) để giá trị nhỏ nhất của hàm số h(x) = f(1 -
3x) trên đoạn \lbrack -
2;0\rbrack nhỏ hơn 2. Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) Sai

    Khi m = 0 ta có y = f(x) = x^{3} - 3x - 2y' = 3x^{2} - 3

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 1
\end{matrix} \right.

    Bảng biến thiên

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng 0.

    b) Đúng

    Ta có x \in \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack \Leftrightarrow 2x \in \lbrack -
1;1\rbrack

    Đặt t = 2x,t \in \lbrack -
1;1\rbrack, f(t) = t^{3} - 3t -
2

    Theo câu a có giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4.

    c) Đúng

    x \in \lbrack - 3;0\rbrack
\Leftrightarrow x + 1 \in \lbrack - 2;1\rbrack

    Đặt t = x + 1, t \in \lbrack - 2;1\rbrack; f(t) = t^{3} - 3t - 1

    f'(t) = 3t^{2} - 3; f'(t) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1 \\
t = - 1
\end{matrix} \right.

    Ta có f( - 2) = - 3; f( - 1) = 1; f(1) = - 3 nên \max_{\lbrack - 3;0\rbrack}f(x + 1) =
1.

    d) Sai

    Đặt t = 1 - 3x, x \in \lbrack - 2;0\rbrack \Rightarrow t \in
\lbrack 1;7\rbrack

    f(t) = t^{3} - 3t + m^{2} - 2, f'(t) = 3t^{2} - 3 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 1 \in \lbrack 1;7\rbrack \\
t = - 1 \notin \lbrack 1;7\rbrack
\end{matrix} \right.

    f(1) = m^{2} - 4; f(7) = m^{2} + 320

    \mathop {\min h(x)}\limits_{\left[ { - 2;0} \right]}  < 2 \Leftrightarrow {m^2} - 4 < 2 \Leftrightarrow  - \sqrt 6  < m < \sqrt 6

    Do m \in ( - 2023;2024), m \in Z \Rightarrow m \in \left\{ - 2, - 1,0,1,2
\right\}. Vậy có 5 giá trị thỏa mãn nên câu d sai

  • Câu 7: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho đồ thị hàm số y = \frac{bx - c}{x -
a} (a,b,c\mathbb{\in R}) có đồ thị như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các nhận định?

    a) Hàm số nghịch biến trên từng khoảng xác định. Đúng||Sai

    b) Giao điểm với trục tung là điểm có tung độ âm. Đúng||Sai

    c) Giao điểm với trục hoành là điểm có hoành độ âm. Đúng||Sai

    d) Trong các số a,b,c có hai số âm. Sai||Đúng

    Đáp án là:

    Cho đồ thị hàm số y = \frac{bx - c}{x -
a} (a,b,c\mathbb{\in R}) có đồ thị như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các nhận định?

    a) Hàm số nghịch biến trên từng khoảng xác định. Đúng||Sai

    b) Giao điểm với trục tung là điểm có tung độ âm. Đúng||Sai

    c) Giao điểm với trục hoành là điểm có hoành độ âm. Đúng||Sai

    d) Trong các số a,b,c có hai số âm. Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    a) Đúng.

    Hàm số nghịch biến trên từng khoảng xác định.

    b) Đúng.

    Giao điểm với trục tung là điểm có tung độ âm.

    c) Đúng.

    Giao điểm với trục hoành là điểm có hoành độ âm.

    d) Sai.

    Tiệm cận đứng x = a > 0.

    Tiệm cận ngang y = b > 0.

    Đồ thị hàm số cắt trục tung tại điểm có tung độ \frac{c}{a} < 0 \Rightarrow c < 0 .

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị là (C). Biết (C) có một điểm cực trị là A(1; - 1) và tâm đối xứng là I\left( \frac{2}{3}; - \frac{29}{27}
\right). Xét tính đúng sai của các mệnh đề dưới đây?

    a) (C) có một điểm cực trị là B\left( - \frac{1}{3}; - \frac{2}{27}
\right). Sai||Đúng

    b) a + b + c + d = - 1. Đúng||Sai

    c) Tiếp tuyến của (C) tại A song song với trục hoành. Đúng||Sai

    d) a + 2b + 3c + 4d = 4. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị là (C). Biết (C) có một điểm cực trị là A(1; - 1) và tâm đối xứng là I\left( \frac{2}{3}; - \frac{29}{27}
\right). Xét tính đúng sai của các mệnh đề dưới đây?

    a) (C) có một điểm cực trị là B\left( - \frac{1}{3}; - \frac{2}{27}
\right). Sai||Đúng

    b) a + b + c + d = - 1. Đúng||Sai

    c) Tiếp tuyến của (C) tại A song song với trục hoành. Đúng||Sai

    d) a + 2b + 3c + 4d = 4. Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    + Theo tính chất của đồ thị hàm số bậc ba, ta có:

    A,\ \ B là hai điểm cực trị và I là tâm đối xứng của (C) \Rightarrow I là trung điểm của AB

    \Rightarrow \left\{ \begin{matrix}
x_{B} = 2x_{I} - x_{A} = \frac{1}{3} \\
y_{B} = 2y_{I} - y_{A} = - \frac{31}{27}
\end{matrix} \right.

    \RightarrowCâu a sai.

    + Vì A là điểm cực trị của (C) nên A \in
(C) \Rightarrow a + b + c + d = -
1.

    \RightarrowCâu b đúng.

    + Vì A là điểm cực trị của (C) nên f'\left( x_{A} \right)= 0.

    Phương trình tiếp tuyến của (C) tại A là:

    y = f'\left( x_{A} \right)\left( x -
x_{A} \right) + y_{A} \Leftrightarrow y = - 1

    \Rightarrow Tiếp tuyến của (C) tại A song song với trục hoành.

    \RightarrowCâu c đúng.

    + Ta có: f'(x) = 3ax^{2} + 2bx +
cf''(x) = 6ax +
2b

    GT \Leftrightarrow \left\{\begin{matrix}f^{'\left( x_{A} \right)} = 0 \\f^{''\left( x_{I} \right)} = 0 \\A \in (C) \\I \in (C)\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}3a + 2b + c = 0 \\4a + 2b = 0 \\a + b + c + d = - 1 \\\frac{8}{27}a + \frac{4}{9}b + \frac{2}{3}c + d = - \frac{29}{27}\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}a = - 1 \\b = 2 \\c = - 1 \\d = - 1\end{matrix} \right.

    Do đó: a + 2b + 3c + 4d = -
4

    \Rightarrow Câu d sai.

  • Câu 9: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 2x + 4}{x -
2} có đồ thị (C). Khi đó nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là \mathbb{R}. Sai||Đúng

    b) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 2 và có tiệm cận xiên là đường thẳng y = x. Đúng||Sai

    c) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng 4. Đúng||Sai

    d) Cho đường thẳng y = mx - 2. Khi đó có đúng 8 giá trị nguyên của tham số m không vượt quá 10 để đồ thị hàm số đã cho cắt đường thẳng y = mx - 2 tại hai điểm phân biệt nằm về hai phía so với tiệm cận đứng của đồ thị (C). Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 2x + 4}{x -
2} có đồ thị (C). Khi đó nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là \mathbb{R}. Sai||Đúng

    b) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 2 và có tiệm cận xiên là đường thẳng y = x. Đúng||Sai

    c) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng 4. Đúng||Sai

    d) Cho đường thẳng y = mx - 2. Khi đó có đúng 8 giá trị nguyên của tham số m không vượt quá 10 để đồ thị hàm số đã cho cắt đường thẳng y = mx - 2 tại hai điểm phân biệt nằm về hai phía so với tiệm cận đứng của đồ thị (C). Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}\backslash\left\{ 2
\right\}.

    b) ĐÚNG. Dễ thấy tiệm cận đứng là x = 2.

    Ta có \lim_{x \rightarrow + \infty}\left(
\frac{x^{2} - 2x + 4}{x - 2} - x \right) = \lim_{x \rightarrow +
\infty}\left( \frac{4}{x - 2} \right) = 0;

    \lim_{x \rightarrow - \infty}\left(\frac{x^2 - 2x + 4}{x - 2} - x \right) = \lim_{x \rightarrow -\infty}\left( \frac{4}{x - 2} \right) = 0.

    Vậy phương trình tiệm cận xiên là y =
x.

    c) ĐÚNG. Ta có y' =
1 - \frac{4}{(x - 2)^{2}}.

    Ta thấy y' = 0 \Leftrightarrow x =
0;x = 4. y(0) = - 2;y(4) =
6.

    Vậy tổng các giá trị cực đại và giá trị cực tiểu là - 2 + 6 = 4.

    d) SAI. Phương trình hoành độ giao điểm

    \frac{x^{2} - 2x + 4}{x - 2} = mx -
2

    Dễ thấy phương trình không có nghiệm x =
2 nên phương trình tương đương

    (m - 1)x^{2} - 2mx = 0.

    Nếu m = 1 thì phương trình có nghiệm duy nhất x = 0.

    Nếu m \neq 1, phương trình đã cho có hai nghiệm x = 0;x = \frac{2m}{m -
1}.

    Yêu cầu bài toán tương đương \frac{2m}{m
- 1} > 2 \Leftrightarrow \frac{2}{m - 1} > 0 \Leftrightarrow m
> 1.

    Vậy có 9 giá trị nguyên của tham số m thỏa mãn là 2;3;4;5;6;7;8;9;10.

  • Câu 10: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{ax + b}{cx +
1} có đồ thị như hình vẽ sau:

    A graph of a functionDescription automatically generated

    Xét sự đúng sai của các nhận định:

    a) Tâm đối xứng của đồ thị có tọa độ là (2;1). Sai||Đúng

    b) a - 2b + c = - 5. Sai||Đúng

    c) Tiếp tuyến của đồ thị tại điểm có hoành độ x = 2 có phương trình là y = - 3x + 11. Đúng||Sai

    d) Có đúng 4 điểm M(m;n) với m,\ \ n\mathbb{\in Z} thuộc đồ thị. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax + b}{cx +
1} có đồ thị như hình vẽ sau:

    A graph of a functionDescription automatically generated

    Xét sự đúng sai của các nhận định:

    a) Tâm đối xứng của đồ thị có tọa độ là (2;1). Sai||Đúng

    b) a - 2b + c = - 5. Sai||Đúng

    c) Tiếp tuyến của đồ thị tại điểm có hoành độ x = 2 có phương trình là y = - 3x + 11. Đúng||Sai

    d) Có đúng 4 điểm M(m;n) với m,\ \ n\mathbb{\in Z} thuộc đồ thị. Đúng||Sai

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

    + Từ đồ thị, ta có:

    Tiệm cận đứng: x = 1

    Tiệm cận ngang: y = 2

    \Rightarrow Tâm đối xứng của đồ thị có tọa độ là (1;2)

    \RightarrowCâu a sai.

    + Từ đồ thị, ta có:

    Tiệm cận đứng: x = 1 \Rightarrow -
\frac{1}{c} = 1 \Leftrightarrow c = - 1

    Tiệm cận ngang: y = 2 \Rightarrow
\frac{a}{c} = 2 \Leftrightarrow a = 2c

    \Rightarrow a = - 2

    Điểm A(0; - 1) thuộc đồ thị \Rightarrow - 1 = b.

    Do đó: a - 2b + c = - 1.

    \RightarrowCâu b sai.

    + Với a = - 2;b = - 1;c = - 1 suy ra: y = \frac{- 2x - 1}{- x +
1}

    \Rightarrow y' = \frac{- 3}{( - x +
1)^{2}}

    Ta có: x = 2 \Rightarrow \left\{
\begin{matrix}
y(2) = 5 \\
y'(2) = - 3
\end{matrix} \right.

    Tiếp tuyến của đồ thị tại điểm có hoành độ x = 2 có phương trình là

    y = y'(2)(x - 2) + y(2)

    \Leftrightarrow y = - 3x +
11

    \RightarrowCâu c đúng.

    + Ta có: y = \frac{- 2x - 1}{- x +
1}

    M(m;n) thuộc đồ thị nên n = \frac{- 2m - 1}{- m + 1} \Leftrightarrow n = 2
- \frac{3}{- m + 1}

    Do m,\ \ n\mathbb{\in Z} nên ( - m + 1) \inƯ(3) \Leftrightarrow - m + 1 \in \left\{ - 3; - 1;1;3
\right\}

    \Leftrightarrow m \in \left\{ 4;2;0; - 2
\right\}

    Suy ra: có đúng 4 điểm M(m;n) với m,\ \ n\mathbb{\in Z} thuộc đồ thị.

    \RightarrowCâu d đúng.

  • Câu 11: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3. Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 12: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 1;3\rbrack và có đồ thị như hình vẽ sau:

    a) \max_{x \in \lbrack - 1;3\rbrack}f(x)
= f(3). Đúng||Sai

    b) \min_{x \in \lbrack - 1;3\rbrack}f(x)
= - 2. Đúng||Sai

    c) Tập giá trị của hàm số f(x) trên \lbrack - 1;2\rbrack\lbrack - 2;3\rbrack. Sai||Đúng

    d) \max_{x\mathbb{\in R}}f\left(
3sin^{2}x - 1 \right) = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 1;3\rbrack và có đồ thị như hình vẽ sau:

    a) \max_{x \in \lbrack - 1;3\rbrack}f(x)
= f(3). Đúng||Sai

    b) \min_{x \in \lbrack - 1;3\rbrack}f(x)
= - 2. Đúng||Sai

    c) Tập giá trị của hàm số f(x) trên \lbrack - 1;2\rbrack\lbrack - 2;3\rbrack. Sai||Đúng

    d) \max_{x\mathbb{\in R}}f\left(
3sin^{2}x - 1 \right) = 2. Đúng||Sai

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    a) Ta có: \max_{x \in \lbrack -
1;3\rbrack}f(x) = 3 = f(3).

    b) Ta có: \min_{x \in \lbrack -
1;3\rbrack}f(x) = - 2.

    c) Trên đoạn \lbrack -
1;2\rbrack, giá trị lớn nhất của hàm số là 2, giá trị nhỏ nhất là - 2. Do đó tập giá trị của hàm số f(x) trên \lbrack - 1;2\rbrack\lbrack - 2;2\rbrack

    d) Đặt t = 3sin^{2}x - 1 \Rightarrow t
\in \lbrack - 1;2\rbrack.

    Giá trị lớn nhất của hàm số y = f\left(
3sin^{2}x - 1 \right) là giá trị lớn nhất của hàm số y = f(t) trên \lbrack - 1;2\rbrack.

    Dựa vào đồ thị ta có: \max_{\mathbb{R}}y
= \max_{\lbrack - 1;2\rbrack}f(t) = 2.

  • Câu 13: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = log_{2}\left( x^{2}
- 3x + 2 \right). Xét tính đúng sai của các nhận định sau:

    a) Hàm số có giá trị lớn nhất trên khoảng (2; + \infty). Sai||Đúng

    b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \lbrack - 1;0\rbrack. Đúng||Sai

    c) Trên đoạn \lbrack -
1;0\rbrack hàm số có giá trị nhỏ nhất bằng 1. Đúng||Sai

    d) Gọi m_{0} là giá trị của tham số m để hàm số g(x) = 2^{f(x)} + m có giá trị nhỏ nhất trên đoạn \lbrack 3;4\rbrack bằng - 3. Khi đó m_{0} \in ( - 5;0). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = log_{2}\left( x^{2}
- 3x + 2 \right). Xét tính đúng sai của các nhận định sau:

    a) Hàm số có giá trị lớn nhất trên khoảng (2; + \infty). Sai||Đúng

    b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \lbrack - 1;0\rbrack. Đúng||Sai

    c) Trên đoạn \lbrack -
1;0\rbrack hàm số có giá trị nhỏ nhất bằng 1. Đúng||Sai

    d) Gọi m_{0} là giá trị của tham số m để hàm số g(x) = 2^{f(x)} + m có giá trị nhỏ nhất trên đoạn \lbrack 3;4\rbrack bằng - 3. Khi đó m_{0} \in ( - 5;0). Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) SAI

    Hàm số có tập xác định D = ( - \infty;1)
\cup (2; + \infty).

    Ta có \lim_{x \rightarrow + \infty}f(x) =
+ \infty.

    b) ĐÚNG

    \lbrack - 1;0\rbrack \subset
D và hàm số liên tục trên \lbrack -
1;0\rbrack nên luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn này.

    c) ĐÚNG

    f(x) = log_{2}\left( x^{2} - 3x + 2
\right) \Rightarrow f'(x) = \frac{2x - 3}{\left( x^{2} - 3x + 2
\right)ln2}

    f'(x) = 0 \Leftrightarrow x = -
\frac{3}{2} \notin \lbrack - 1;0\rbrack.

    \begin{matrix}
f( - 1) = log_{2}6 \\
f(0) = 1 < log_{2}6
\end{matrix}

    Vậy \min_{\lbrack - 1;0\rbrack}f(x) =
1.

    d) SAI

    TXĐ D = ( - \infty;1) \cup (2; +
\infty) chứa \lbrack
3;4\rbrack.

    g(x) = 2^{f(x)} + m = 2^{log_{2}\left(
x^{2} - 3x + 2 \right)} + m = x^{2} - 3x + 2 + m.

    g'(x) = 2x - 3,g'(x) = 0
\Leftrightarrow x = \frac{3}{2} \notin \lbrack 3;4\rbrack. Mà hàm số đồng biến trên \lbrack
3;4\rbrack nên \min_{\lbrack
0;1\rbrack}g(x) = g(3) = 2 + m.

    Theo đề ta có 2 + m = - 3 \Leftrightarrow
m = - 5

    Vậy m_{0} = - 5 \in ( - 5;0) là sai.

  • Câu 14: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 2x + 4}{x -
2} có đồ thị (C). Xét tính đúng sai của các khẳng định dưới đây:

    a) Tập xác định của hàm số đã cho là \mathbb{R}. Sai||Đúng

    b) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 2 và có tiệm cận xiên là đường thẳng y = x. Đúng||Sai

    c) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng 4. Đúng||Sai

    d) Cho đường thẳng y = mx - 2. Khi đó có đúng 8 giá trị nguyên của tham số m không vượt quá 10 để đồ thị hàm số đã cho cắt đường thẳng y = mx - 2 tại hai điểm phân biệt nằm về hai phía so với tiệm cận đứng của đồ thị (C). Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 2x + 4}{x -
2} có đồ thị (C). Xét tính đúng sai của các khẳng định dưới đây:

    a) Tập xác định của hàm số đã cho là \mathbb{R}. Sai||Đúng

    b) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 2 và có tiệm cận xiên là đường thẳng y = x. Đúng||Sai

    c) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng 4. Đúng||Sai

    d) Cho đường thẳng y = mx - 2. Khi đó có đúng 8 giá trị nguyên của tham số m không vượt quá 10 để đồ thị hàm số đã cho cắt đường thẳng y = mx - 2 tại hai điểm phân biệt nằm về hai phía so với tiệm cận đứng của đồ thị (C). Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}\backslash\left\{ 2
\right\}.

    b) ĐÚNG. Dễ thấy tiệm cận đứng là x = 2.

    Ta có \lim_{x \rightarrow + \infty}\left(
\frac{x^{2} - 2x + 4}{x - 2} - x \right) = \lim_{x \rightarrow +
\infty}\left( \frac{4}{x - 2} \right) = 0;

    \lim_{x \rightarrow - \infty}\left(\frac{x^{2} - 2x + 4}{x - 2} -x \right) = \lim_{x \rightarrow -\infty}\left( \frac{4}{x - 2} \right) = 0.

    Vậy phương trình tiệm cận xiên là y =
x.

    c) ĐÚNG. Ta có y' =
1 - \frac{4}{(x - 2)^{2}}.

    Ta thấy y' = 0 \Leftrightarrow x =
0;x = 4. y(0) = - 2;y(4) =
6.

    Vậy tổng các giá trị cực đại và giá trị cực tiểu là - 2 + 6 = 4.

    d) SAI. Phương trình hoành độ giao điểm

    \frac{x^{2} - 2x + 4}{x - 2} = mx -
2

    Dễ thấy phương trình không có nghiệm x =
2 nên phương trình tương đương

    (m - 1)x^{2} - 2mx = 0.

    Nếu m = 1 thì phương trình có nghiệm duy nhất x = 0.

    Nếu m \neq 1, phương trình đã cho có hai nghiệm x = 0;x = \frac{2m}{m -
1}.

    Yêu cầu bài toán tương đương \frac{2m}{m
- 1} > 2 \Leftrightarrow \frac{2}{m - 1} > 0 \Leftrightarrow m
> 1.

    Vậy có 9 giá trị nguyên của tham số m thỏa mãn là 2;3;4;5;6;7;8;9;10.

  • Câu 15: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai.

    Đồ thị (C) có tiệm cận đứng là x = - 1.

    b) Đúng.

    Đồ thị (C) cắt trục Oy tại M(0; -
1).

    Ta có y' = 1 + \frac{1}{(x + 1)^{2}}
\Rightarrow y'(0) = 2.

    Phương trình tiếp tuyến của (C) tại My = 2x - 1.

    c) Sai.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{1}\left( x_{1};y_{1}
\right) có hệ số góc k_{1} =
y'\left( x_{1} \right) = 1 + \frac{1}{\left( x_{1} + 1 \right)^{2}}
> 0.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{2}\left( x_{2};y_{2}
\right) có hệ số góc k_{2} =
y'\left( x_{2} \right) = 1 + \frac{1}{\left( x_{2} + 1 \right)^{2}}
> 0.

    Khi đó k_{1}k_{2} > 0 nên không tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau.

    d) Đúng.

    Phương trình hoành độ giao điểm giữa đồ thị (C) và đường thẳng y = k

    x - \frac{1}{x + 1} = k \Leftrightarrow
\left\{ \begin{matrix}
x \neq - 1 \\
x^{2} + x - 1 = k(x + 1).\ \ \ (1)
\end{matrix} \right.\ \ (I)

    Nhận thấy x = - 1 không thỏa mãn nên (I) \Leftrightarrow x^{2} + (1 - k)x - 1
- k = 0.\ \ (2)

    Phương trình có \Delta = (1 - k)^{2} +
4(1 + k) = k^{2} + 2k + 5 = (k + 1)^{2} + 4 > 0,\forall
k.

    Do đó, đường thẳng y = k luôn cắt đồ thị (C) tại hai điểm phân biệt A\left( x_{A};k \right),B\left( x_{B};k
\right) với x_{A},x_{B} là nghiệm của phương trình.

    Theo Vi-et thì x_{A}x_{B} = - 1 -
k.

    Ta có OA\bot OB \Leftrightarrow
\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Leftrightarrow
x_{A}x_{B} + k^{2} = 0 \Leftrightarrow - 1 - k + k^{2} = 0.

    Vậy OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1= 0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (7%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Vận dụng (60%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm