Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +10
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12 Tích phân hàm phân thức

Khám phá bài tập Toán 12 – Tích phân hàm phân thức giúp bạn nắm vững kiến thức và rèn luyện kỹ năng giải nhanh! Tài liệu tổng hợp các dạng bài tích phân chứa hàm phân thức thường gặp trong chương trình lớp 12, bám sát cấu trúc đề thi THPT Quốc gia. Mỗi bài tập đều có lời giải hoặc đáp án, hỗ trợ học sinh dễ dàng ôn tập và nâng cao hiệu quả học tập.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 22 câu
  • Điểm số bài kiểm tra: 22 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định giá trị của a

    Cho tích phân I =
\int_{0}^{\frac{1}{2}}{\frac{1}{\sqrt{1 - x^{2}}}dx} =
a\piI=01211x2dx=aπ,ab là các số hữu tỉ.. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    Đặt x = \sin t,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx = \cos
tdt.

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = \dfrac{1}{2} \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight..

    I = \int_{0}^{\frac{\pi}{6}}{dt} =
\frac{\pi}{6} \Rightarrow a = \frac{1}{6}.

  • Câu 2: Thông hiểu
    Tìm giá trị tích phân I

    Tích phân I =
\int_{0}^{3}{\frac{1}{\sqrt{x^{2} + 9}}dx}I=031x2+9dx có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{0}^{3}{\frac{1}{\sqrt{x^{2} + 9}}dx} có giá trị là:

    Đặt u = x + \sqrt{x^{2} + 9} \Rightarrow
du = \left( 1 + \frac{x}{\sqrt{x^{2} + 9}} ight)dx

    = \frac{x + \sqrt{x^{2} + 9}}{\sqrt{x^{2}
+ 9}}dx = \frac{udx}{\sqrt{x^{2} + 9}} \Rightarrow \frac{du}{u} = \frac{dx}{\sqrt{x^{2} +9}}

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow u = 3 \\
x = 3 \Rightarrow u = 3 + 3\sqrt{2} \\
\end{matrix} ight..

    \Rightarrow I = \int_{3}^{3 +
3\sqrt{2}}\frac{du}{u} = \left. \ \left( \ln|u| ight) ight|_{3}^{3 +
3\sqrt{2}} = \ln\left( 1 + \sqrt{2} ight).

  • Câu 3: Thông hiểu
    Tính giá trị của tham số a

    Biết I = \int_{0}^{1}{\frac{\sqrt{ln^{3}x
+ 3x}\left( ln^{2}x + \frac{1}{3}x \right)}{x}dx} = \frac{2}{9}\left(
\sqrt{1 + ae + 27e^{2} + 27e^{3}} - 3\sqrt{3} \right)I=01ln3x+3x(ln2x+13x)xdx=29(1+ae+27e2+27e333), a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{e}{\frac{\sqrt{ln^{3}x +
3x}\left( ln^{2}x + \frac{1}{3}x ight)}{x}dx}

    =
\frac{1}{3}\int_{1}^{e}{\frac{\sqrt{ln^{3}x + 3x}\left( 3ln^{2}x + x
ight)}{x}dx}

    Đặt t = ln^{3}x + 3x \Rightarrow dt =
\frac{3}{x}ln^{2}x + 1

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 3 \\
x = e \Rightarrow t = 1 + 3e \\
\end{matrix} ight..

    \Rightarrow I = \int_{3}^{1 +
3e}\sqrt{t}dt = \frac{2}{3}\left. \ \left( \sqrt{t^{3}} ight)
ight|_{3}^{1 + 3e} = \frac{2}{3}\left( \sqrt{(1 + 3e)^{3}} - 3\sqrt{3}
ight).

    = \frac{2}{9}\left( \sqrt{1 + 9e +
27e^{2} + 27e^{3}} - 3\sqrt{3} ight) \Rightarrow a = 9

  • Câu 4: Thông hiểu
    Tìm tổng a và b

    Cho I = \int_{0}^{1}\frac{1}{3 + 2x -
x^{2}}dx = (a - b)ln2 + bln3I=0113+2xx2dx=(ab)ln2+bln3. Giá trị a + b là:

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}\frac{1}{3 + 2x -x^{2}}dx = \int_{0}^{1}\left( \frac{\frac{1}{4}}{x + 1} +\frac{\frac{1}{4}}{3 - x} ight)

    = \frac{1}{4}\left. \ \left( \ln|x + 1|
- \ln|x - 3| ight) ight|_{0}^{1} = \frac{1}{4}ln3

    \Rightarrow a = b = \frac{1}{4}
\Rightarrow a + b = \frac{1}{2}

  • Câu 5: Thông hiểu
    Tìm giá trị gần nhất với đáp án đúng

    Giá trị của tích phân I = \int_{-
1}^{0}{\frac{x^{3} - 3x^{2} + 2}{x^{2} + x - 2}dx}I=10x33x2+2x2+x2dx gần nhất với gái trị nào sau đây?

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{0}{\frac{x^{3} - 3x^{2}
+ 2}{x^{2} + x - 2}dx}

    = \int_{- 1}^{0}{\frac{(x - 1)\left(
x^{2} - 2x - 2 ight)}{(x - 1)(x + 2)}dx}

    = \int_{- 1}^{0}{\frac{x^{2} - 2x - 2}{x
+ 2}dx} = \int_{- 1}^{0}{\left( x - 4 + \frac{6}{x + 2}
ight)dx}

    = \left. \ \left( \frac{x^{2}}{2} - 4x +
6ln|x + 2| ight) ight|_{- 1}^{0} = 6ln2 - \frac{9}{2}

  • Câu 6: Thông hiểu
    Tính tích phân I

    Tích phân I = \int_{-
1}^{0}{\frac{ax}{ax^{2} + 2}dx}I=10axax2+2dx,với a eq - 2aeq2 có giá trị là:

    Hướng dẫn:

    Xét tích phân I = \int_{-
1}^{0}{\frac{ax}{ax^{2} + 2}dx}, với a eq - 2

    Ta nhận thấy: \left( ax^{2} + 2
ight)' = 2ax.

    Ta dùng đổi biến số.

    Đặt t = ax^{2} + 2 \Rightarrow dt =
2axdx.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 2 \\
x = - 1 \Rightarrow t = a + 2 \\
\end{matrix} ight..

    Ta có:

    I = \int_{a + 2}^{2}{\frac{1}{2t}dt
=}\frac{1}{2}\left. \ \left( \ln|t| ight) ight|_{a + 2}^{2} =
\frac{1}{2}\left( ln2 - \ln|a + 2| ight).

  • Câu 7: Thông hiểu
    Xác định giá trị nguyên của tham số a

    Tích phân I = \int_{1}^{2}\frac{ax -
2}{\sqrt{ax^{2} - 4x}}dx = 2\sqrt{3} - 1I=12ax2ax24xdx=231. Giá trị nguyên của a là:

    Hướng dẫn:

    Ta có: \left( ax^{2} - 4x ight)' =
2ax - 4 = 2(ax - 2).

    \Rightarrow I =
\frac{1}{2}\int_{1}^{2}\frac{2ax - 4}{\sqrt{ax^{2} -
4x}}dx.

    Đặt t = ax^{2} - 4x \Rightarrow dt = (2ax
- 4)dx.

    Đổi cận \left\{ \begin{matrix}
x = 2 \Rightarrow t = 4a - 8 \\
x = 1 \Rightarrow t = a - 4 \\
\end{matrix} ight..

    Ta có:

    I = \frac{1}{2}\int_{a - 4}^{4a -
8}\frac{1}{\sqrt{t}}dt = \left. \ \left( \sqrt{t} ight) ight|_{a -
4}^{4a - 8} = \sqrt{4a - 8} - \sqrt{a - 4}

    Theo đề bài:

    I = 2\sqrt{3} - 1
\Leftrightarrow \sqrt{4a - 8} - \sqrt{a - 4} = 2\sqrt{3} -
1

    \Leftrightarrow ..... \Leftrightarrow a =
5.

  • Câu 8: Thông hiểu
    Tính tích ab

    Cho I = \int_{0}^{1}{\frac{x}{\sqrt{x^{2}
+ 1}}dx} = a\sqrt{2} + bI=01xx2+1dx=a2+b. Giá trị a.b là:

    Hướng dẫn:

    Ta có:

    Đặt t = x^{2} + 1 \Rightarrow dt =
2xdx.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = 2 \\
\end{matrix} ight..

    \Rightarrow I =
\frac{1}{2}\int_{1}^{2}{\frac{1}{\sqrt{t}}dt} = \sqrt{2} -
1

    \Rightarrow a = 1,b = - 1 \Rightarrow a.b
= - 1.

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Tích phân I = \int_{1}^{2}\frac{ax +
1}{x^{2} + 3x + 2}dx = \frac{3}{5}\ln\frac{4}{3} +
\frac{3}{5}\ln\frac{2}{3}I=12ax+1x2+3x+2dx=35ln43+35ln23. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{2}\frac{ax + 1}{x^{2} + 3x
+ 2}dx = a\int_{1}^{2}\frac{x}{x^{2} + 3x + 2}dx +
\int_{1}^{2}\frac{1}{x^{2} + 3x + 2}dx.

    Xét I_{1} = a\int_{1}^{2}\frac{x}{x^{2} +
3x + 2}dx = a\int_{1}^{2}\left( \frac{2}{x + 2} - \frac{1}{x + 1}
ight)dx

    = a\left. \ \left( 2ln|x + 2| - \ln|x +
1| ight) ight|_{1}^{2}

    = a(2ln4 - 3ln3 + ln2) =
2a\ln\frac{4}{3} + a\ln\frac{2}{3}

    Xét I_{2} = \int_{1}^{2}\frac{1}{x^{2} +
3x + 2}dx = \left. \ \left( \ln|x + 1| - \ln|x + 2| ight)
ight|_{1}^{2} = - \ln\frac{4}{3} - \ln\frac{2}{3}.

    \Rightarrow I = I_{1} + I_{2}^{\ }\  =
(2a - 1)\ln\frac{4}{3} + (a - 1)\ln\frac{2}{3}

    Theo đề bài: I =
\frac{3}{5}\ln\frac{4}{3} + \frac{3}{5}\ln\frac{2}{3} \Rightarrow a =
\frac{4}{5}.

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Cho \int_{1}^{2}{\frac{1}{\sqrt{x^{2} +
1}}dx} = \ln\frac{2 + \sqrt{a}}{1 + \sqrt{b}}121x2+1dx=ln2+a1+b,ab là các số hữu tỉ.. Giá trị \frac{a}{b}ab là:

    Hướng dẫn:

    Ta đặt: t = x + \sqrt{x^{2} + 1}\Rightarrow \frac{dt}{t} = \frac{dx}{\sqrt{x^{2} + 1}}.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 + \sqrt{2} \\
x = 2 \Rightarrow t = 2 + \sqrt{5} \\
\end{matrix} ight..

    Ta có:

    \int_{1 + \sqrt{2}}^{2 +
\sqrt{5}}\frac{dt}{t} = \left. \ \left( \ln|t| ight) ight|_{1 +
\sqrt{2}}^{2 + \sqrt{5}}\ln\frac{2 + \sqrt{5}}{1 +
\sqrt{2}}.

  • Câu 11: Thông hiểu
    Tính giá trị tham số a

    Tích phân I = \int_{1}^{a}\frac{x^{2} +
1}{x^{3} + 3x}dx = \frac{1}{3}\ln\frac{7}{2}I=1ax2+1x3+3xdx=13ln72. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{a}\frac{x^{2} + 1}{x^{3} +
3x}dx, với t = x^{3} +
3x

    \Rightarrow \frac{1}{3}\int_{4}^{a^{3} +
3a}{\frac{1}{t}dt} = \frac{1}{3}\left. \ \left( \ln|t| ight)
ight|_{4}^{a^{3} + 3a} = \frac{1}{3}\ln\frac{a^{3} +
3a}{4}

    Theo đề bài:

    \frac{1}{3}\ln\frac{a^{3} + 3a}{4} =\frac{1}{3}\ln\frac{7}{2} \Leftrightarrow a^{3} + 3a - 14 = 0

    \Leftrightarrow (a - 2)\left( a^{2} + 2a
+ 7 ight) = 0 \Leftrightarrow a = 2

  • Câu 12: Thông hiểu
    Xác định giá trị tích phân

    Tích phân I = \int_{-
1}^{\frac{1}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx}I=1124x35+4xx2dx có giá trị là:

    Hướng dẫn:

    Thực hiện tính tích phân I theo hai cách như sau:

    Cách 1:

    Ta có:\left( 5 + 4x - x^{2} ight)'
= 4 - 2x4x - 3 = 5 - 2(4 -
2x).

    I =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx}

    = \int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} -
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Xét I_{1} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{9 - (x -
2)^{2}}}dx}.

    Đặt x - 2 = 3sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
3costdt.

    Đổi cận \left\{ \begin{matrix}
x = \frac{7}{2} \Rightarrow t = \frac{\pi}{6} \\
x = \frac{1}{2} \Rightarrow t = - \frac{\pi}{6} \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{6}}{\frac{5.3cost}{\sqrt{9 - 9sin^{2}t}}dt} =
\frac{5\pi}{3}.

    Xét I_{2} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Đặt t = 5 + 4x - x^{2} \Rightarrow dt = 4
- 2x.

    Đổi cận \left\{ \begin{matrix}
x = \dfrac{1}{2} \Rightarrow t = \dfrac{27}{4} \\
x = \dfrac{7}{2} \Rightarrow t = \dfrac{27}{4} \\
\end{matrix} ight.\  \Rightarrow I_{2} = 0.

    \Rightarrow I =
\frac{5\pi}{3}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Tích phân I =\int_{1}^{e}{\frac{2\ln x\sqrt{ln^{2}x + 1}}{x}dx}I=1e2lnxln2x+1xdx có gái trị là:

    Hướng dẫn:

    Xét tích phân I =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx}

    Ta nhận thấy: \left( ln^{2}x + 1
ight)' = \frac{2lnx}{x}.

    Ta dùng đổi biến số.

    Đặt t = ln^{2}x + 1 \Rightarrow dt =
\frac{2lnx}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = 2 \\
\end{matrix} ight..

    I = \int_{1}^{2}{\sqrt{t}dx} = \left. \
\left( \frac{2}{3}t^{\frac{3}{2}} ight) ight|_{1}^{2} =
\frac{4\sqrt{2} - 2}{3}.

    Đáp án đúng là I = \frac{4\sqrt{2} -
2}{3}.

  • Câu 14: Thông hiểu
    Tính tích phân I

    Tích phân I = \int_{- 2}^{-
1}\frac{\left| x^{3} - 3x + 2 \right|}{x - 1}dxI=21|x33x+2|x1dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 2}^{-
1}\frac{\left| x^{3} - 3x + 2 ight|}{x - 1}dx có giá trị là:

    Ta có: \underset{f(x)}{\overset{x^{3} -
3x + 2}{︸}} = 0 \Leftrightarrow (x - 1)^{2}(x + 2) = 0 \Leftrightarrow
x = 1 \vee x = - 2.

    Bảng xét dấu:

    Ta có

    :I = \int_{- 2}^{- 1}\frac{x^{3} - 3x +
2}{x - 1}dx = \int_{- 2}^{- 1}\left( x^{2} + x - 2 ight)dx

    = \left. \
\left( \frac{1}{3}x^{3} + \frac{1}{2}x^{2} - 2x ight) ight|_{- 2}^{-
1} = \frac{7}{6}.

    Đáp án đúng là I =
\frac{7}{6}.

  • Câu 15: Vận dụng
    Tìm giá trị của tích phân I

    Tích phân I = \int_{- 2}^{2}\left|
\frac{x^{2} - x - 2}{x - 1} \right|dxI=22|x2x2x1|dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 2}^{0}\left|
\frac{x^{2} - x - 2}{x - 1} ight|dx có giá trị là:

    Ta có:

    f(x) = \frac{x^{2} - x - 2}{x - 1}
\Rightarrow f(x) = 0

    \Leftrightarrow x = - 1 \vee x = 2 \land
x eq 1

    Bảng xét dấu:

    Ta có:

    I = \int_{- 2}^{0}\left| \frac{x^{2} - x
- 2}{x - 1} ight|dx = - \int_{- 2}^{- 1}\left( \frac{x^{2} - x - 2}{x
- 1} ight)dx + \int_{- 1}^{0}\frac{x^{2} - x - 2}{x -
1}dx.

    I_{1} = - \int_{- 2}^{- 1}\left(
\frac{x^{2} - x - 2}{x - 1} ight)dx = - - \int_{- 2}^{- 1}\left( x -
\frac{2}{x - 1} ight)dx

    = - \left. \ \left( \frac{x^{2}}{2} -
2ln|x - 1| ight) ight|_{- 2}^{- 1} = \frac{5}{2} + 2ln2 -
2ln3.

    I_{2} = \int_{- 1}^{0}\left( \frac{x^{2}
- x - 2}{x - 1} ight)dx = ... = \left. \ \left( \frac{x^{2}}{2} -
2ln|x - 1| ight) ight|_{- 1}^{0} = \frac{1}{2} - 2ln2.

    \Rightarrow I = I_{1} + I_{2} = 3 -
2ln3.

  • Câu 16: Thông hiểu
    Tìm giá trị của tích phân I

    Tích phân I =
\int_{0}^{\sqrt[3]{7}}{\frac{3x^{5}}{\sqrt[3]{8 - x^{3}}}dx}I=0733x58x33dx có giá trị là:

    Hướng dẫn:

    Thực hiện tích phân I =
\int_{0}^{\sqrt[3]{7}}{\frac{3x^{5}}{\sqrt[3]{8 - x^{3}}}dx} theo hai cách như sau:

    Cách 1: Ta nhận thấy: \left( 8 - x^{3}ight)' = - 3x^{2}.

    Ta dùng đổi biến số.

    Đặt t = 8 - x^{3} \Rightarrow dt = -
3x^{2}dx.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 8 \\
x = \sqrt[3]{7} \Rightarrow t = 1 \\
\end{matrix} ight..

    Ta có:

    I =
\int_{0}^{\sqrt[3]{7}}{\frac{3x^{5}}{\sqrt[3]{8 - x^{3}}}dx} = -
\int_{0}^{\sqrt[3]{7}}{\frac{- 3x^{2}.x^{3}}{\sqrt[3]{8 - x^{3}}}dx}

    = -
\int_{0}^{\sqrt[3]{7}}{\frac{- 3x^{2}(8 - t)}{\sqrt[3]{8 -
x^{3}}}dx}

    \Rightarrow I = \int_{8}^{1}\frac{t -
8}{\sqrt[3]{t}}dt = \int_{8}^{1}\left( t^{\frac{2}{3}} - 8.t^{-
\frac{1}{3}} ight)dt= \left. \ \left( \frac{3}{5}t^{\frac{5}{3}} -
12t^{\frac{2}{3}} ight) ight|_{8}^{1} = \frac{87}{5}.

    Cách 2: Dùng máy tính cầm tay, tuy nhiên chờ máy giải cũng khá mất thời gian.

  • Câu 17: Thông hiểu
    Tìm giá trị tham số a thỏa mãn điều kiện

    Cho \int_{0}^{1}{\frac{x^{2}}{x^{3} +
1}dx} = \frac{1}{3}\ln a01x2x3+1dx=13lna,a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{x^{2}}{x^{3} + 1}dx} =
... = \int_{1}^{2}{\frac{1}{3t}dt} = \frac{1}{3}\left. \ \left( \ln|t|
ight) ight|_{1}^{2} = \frac{1}{3}ln2 \Rightarrow a = 2.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Tích phân I = \int_{-
1}^{1}{\frac{x}{\sqrt{x + 1} - 1}dx}I=11xx+11dx có giá trị là:

    Hướng dẫn:

    Ta có:

    \frac{x}{\sqrt{x + 1} - 1} = \sqrt{x +
1} + 1

    \Rightarrow I = \int_{-
1}^{1}\frac{x}{\sqrt{x + 1} - 1}dx = \int_{- 1}^{1}\left( \sqrt{x + 1} +
1 ight)dx

    = \left. \ \left\lbrack \frac{2}{3}(x +
1)^{\frac{3}{2}} + x ightbrack ight|_{- 1}^{1} =
\frac{4\sqrt{2}}{3} + 2

    Đáp án đúng là I = \frac{4\sqrt{2}}{3} +
2.

  • Câu 19: Vận dụng
    Chọn phương án đúng

    Tích phân I = \int_{0}^{1}{\frac{3 +
4x}{\sqrt{3 + 2x - x^{2}}}dx}I=013+4x3+2xx2dx có giá trị là:

    Hướng dẫn:

    Ta có: \left( 3 + 3x - x^{2} ight)'
= 3 - 2x3 + 4x = 9 - 2(3 -
2x)

    \Rightarrow I = \int_{0}^{1}{\frac{3 +
4x}{\sqrt{3 + 2x - x^{2}}}dx} = \int_{0}^{1}{\frac{7 - 2(2 -
2x)}{\sqrt{3 + 2x - x^{2}}}dx}

    = \int_{0}^{1}{\frac{7}{\sqrt{3 + 2x -
x^{2}}}dx} - \int_{0}^{1}{\frac{2(2 - 2x)}{\sqrt{3 + 2x -
x^{2}}}dx}.

    Xét I_{1} = \int_{0}^{1}{\frac{7}{\sqrt{3
+ 2x - x^{2}}}dx} = \int_{0}^{1}{\frac{7}{\sqrt{4 - (x -
1)^{2}}}dx}.

    Đặt x - 1 = 2sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
2costdt.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = - \frac{\pi}{6} \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-\frac{\pi}{6}}^{0}{\frac{14cost}{\sqrt{4 - 4\sin^{2}t}}dt} =\frac{7\pi}{6}.

    Xét I_{2} = \int_{0}^{1}{\frac{2(2 -
2x)}{\sqrt{3 + 2x - x^{2}}}dx}.

    Đặt t = 3 + 2x - x^{2} \Rightarrow dt =
(2 - 2x)dx.

    Đổi cận\left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight..

    \Rightarrow I_{2} =
\int_{3}^{4}{\frac{2}{\sqrt{t}}dt} = 4\left. \ \left( t^{\frac{1}{2}}
ight) ight|_{3}^{4} = 4\left( 2 - \sqrt{3} ight).

    I = I_{1} - I_{2} = \frac{7\pi}{6} +
4\sqrt{3} - 8.

  • Câu 20: Thông hiểu
    Tìm đáp án đúng

    Tích phân I =
\int_{0}^{1}{\frac{a^{2}x^{3} + ax}{\sqrt{ax^{2} + 1}}dx}I=01a2x3+axax2+1dx, với a \geq 0a0 có giá trị là:

    Hướng dẫn:

    Xét tích phân I =
\int_{0}^{1}{\frac{a^{2}x^{3} + ax}{\sqrt{ax^{2} + 1}}dx}, với a \geq 0

    Ta biến đổi:

    I =
\int_{0}^{1}{\frac{a^{2}x^{3} + ax}{\sqrt{ax^{2} + 1}}dx} =
\int_{0}^{1}{\frac{ax\left( ax^{2} + 1 ight)}{\sqrt{ax^{2} + 1}}dx} =
\int_{0}^{1}{\left( ax\sqrt{ax^{2} + 1} ight)dx}.

    Ta nhận thấy: \left( ax^{2} + 1
ight)' = 2ax. Ta dùng đổi biến số.

    Đặt t = ax^{2} + 1 \Rightarrow dt =
2axdx.

    Đổi cận\left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = a + 1 \\
\end{matrix} ight..

    Ta có:

    I = {\int_{1}^{a + 1}{\frac{1}{2}tdt =
\left. \ \left( \frac{1}{4}t^{2} ight) ight|}}_{1}^{a + 1} =
\frac{1}{4}a(a + 2).

  • Câu 21: Thông hiểu
    Xác định thương số giữa a và b

    Biết rằng I_{1} = \int_{-
\frac{\pi}{4}}^{0}{\frac{1}{1 + cos2x}dx} = aI1=π4011+cos2xdx=aI = \int_{- 1}^{0}\sqrt[3]{x + 2}dx = b\sqrt[3]{2}
- \frac{3}{4}I=10x+23dx=b2334, ab là các số hữu tỉ. Thương số giữa ab có giá trị là:

    Hướng dẫn:

    Ta có:

    I_{1} = \int_{-
\frac{\pi}{4}}^{0}{\frac{1}{1 + cos2x}dx} = \frac{1}{2}\int_{-
\frac{\pi}{4}}^{0}{\frac{1}{cos^{2}x}dx} = ... = \frac{1}{2}\int_{-
1}^{0}{tdt} = \frac{1}{2}, với t =
\tan x.

    I = \int_{- 1}^{0}\sqrt[3]{x + 2}dx =
\frac{3}{4}\left. \ \left\lbrack \sqrt[3]{(x + 2)^{4}} ightbrack
ight|_{- 1}^{0} = \frac{3}{2}\sqrt[3]{2} - \frac{3}{4}.

    \Rightarrow a = \frac{1}{2},b =
\frac{3}{2} \Rightarrow \frac{a}{b} = \frac{1}{3}.

  • Câu 22: Thông hiểu
    Tìm giá trị của biểu thức I

    Tích phân I =
\int_{0}^{1}\frac{a}{\sqrt{3x^{2} + 12}}dxI=01a3x2+12dx có giá trị là:

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}\frac{a}{\sqrt{3x^{2} +
12}}dx = \frac{a}{\sqrt{3}}\int_{0}^{1}\frac{1}{\sqrt{x^{2} +
4}}dx.

    Đặt u = x + \sqrt{x^{2} + 4} \Rightarrow
du = \frac{x + \sqrt{x^{2} + 4}}{\sqrt{x^{2} + 4}}dx \Rightarrow
\frac{du}{u} = \frac{dx}{\sqrt{x^{2} + 4}}.

    I = \frac{a}{\sqrt{3}}\int_{2}^{1 +\sqrt{5}}{\frac{1}{u}du}= \left. \ \frac{a}{\sqrt{3}}\left( \ln uight) ight|_{2}^{1 + \sqrt{5}}= \frac{a}{\sqrt{3}}\ln\left| \frac{1+ \sqrt{5}}{2} ight|.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (86%):
    2/3
  • Thông hiểu (14%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 1 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo

Nhiều người đang xem

🖼️

Chuyên đề Toán 12

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng