Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập toán 12 Ứng dụng nguyên hàm, tích phân trong thực tế

Tổng hợp bài tập trắc nghiệm Toán học 12 chuyên đề Ứng dụng nguyên hàm, tích phân trong thực tế, giúp học sinh luyện tập và củng cố hiệu quả kiến ​​thức lớp 12. Tài liệu đính kèm đáp án chi tiết, phù hợp để ôn thi THPT Quốc gia.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 21 câu
  • Điểm số bài kiểm tra: 21 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính quãng đường s của vật di chuyển được

    Một vật chuyển động trong 3 giờ với vận tốc (km/h) phụ thuộc thời gian t (h) có đồ thị của vận tốc như hình dưới. Trong khoảng thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh I(2;9)I(2;9) và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Ta tìm được phương trình của parabol là

    (P):v(t) = - \frac{5}{4}t^{2} + 5t +
4.

    Khi t = 1 thì v(1) = - \frac{5}{4} + 5 + 4 =
\frac{31}{4}(km/h)

    Vậy v(t) = \left\{ \begin{matrix}
- \frac{5}{4}t^{2} + 5t + 4;\ \ \ 0 \leq t \leq 1 \\
\frac{31}{4};\ \ \ 1 < \ t \leq 3 \\
\end{matrix} ight.

    Vậy quãng đường mà vật di chuyển được trong 3 giờ là:

    s = \int_{0}^{1}{\left( -
\frac{5}{4}t^{2} + 5t + 4 ight)dt} + \frac{31}{4}.2

    = \frac{73}{12} + \frac{31}{2} =
\frac{259}{12} \approx 21,58(km/h)

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Một ôtô đang chạy với vận tốc 10 m/s thì người lái đạp phanh; từ thời điểm đó, ôtô chuyển động chậm dần đều với vận tốc v = - 5t + 15(m/s)v=5t+15(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ôtô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Quãng đường vật đi từ lúc đạp phanh cho đến lúc dừng hẳn

    - 5t + 15 = 0 \Leftrightarrow t =
3

    \Rightarrow \int_{3}^{0}{( - 5t + 15)dt}
= \left( - \frac{5t^{2}}{2} + 15t ight)|_{0}^{3}

    = - \left( - \frac{5}{2}.3^{2} + 15.3
ight) = 22,5(m)

  • Câu 3: Vận dụng
    Chọn kết quả đúng

    Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn là 28cm, trục nhỏ 25cm. Biết cứ 1000cm3 dưa hấu sẽ làm được cốc sinh tố giá 20.000 đồng. Hỏi từ quả dưa như trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? (Biết rằng bề dày của vỏ dưa không đáng kể, kết quả đã được quy tròn)

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử thiết diện nằm trên hệ Oxy, tâm O trùng với tâm thiết diện

    Suy ra elip: \frac{x^{2}}{14^{2}} +
\frac{y^{2}}{12,5^{2}} = 1. Thể tích quả dưa hấu chính là thể tích vật thể thu được khi quay phần gạch chéo quanh trục Ox.

    \Rightarrow V = \left| \pi\int_{-
14}^{14}{12,5^{2}\left( 1 - \frac{x^{2}}{14^{2}} ight)dx} ight| =
\frac{8750\pi}{3}

    Số tiền thu được là:

    20000.\frac{8750\pi}{3} \approx 183259
\approx 183000 đồng.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Một ô tô đang chạy đều với vận tốc 15 m/s thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc -
aa m/s2. Biết ô tô chuyển động thêm được 20 m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây:

    Hướng dẫn:

    Từ giả thiết ta có v = \int_{}^{}{( -
a)dt} \Rightarrow v = 15 - at

    s = \int_{}^{}{tdt} = \int_{}^{}{(15 -
at)dt} \Rightarrow s = 15t - \frac{at^{2}}{2}

    Ô tô chuyển động được 20m thì dừng tại thời điểm

    Suy ra

    \left\{ \begin{matrix}
v = 0 \\
s = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
15 - at_{1} = 0 \\
15t_{1} - \frac{a{t_{1}}^{2}}{2} = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
at_{1} = 15 \\
15t_{1} - \frac{15t_{1}}{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
15 - at_{1} = 0 \\
t_{1} = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow a = \frac{45}{8} \Rightarrow a
\in (5;6)

  • Câu 5: Thông hiểu
    Tính quãng đường vật đi được

    Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức v(t) = 3t + 2v(t)=3t+2, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị m. Biết tại thời điểm t =
2(s)t=2(s) thì vật đi được quãng đường là 10m. Hỏi tại thời điểm t = 30st=30s thì vật đi được quãng đường là bao nhiêu?

    Hướng dẫn:

    Ta có:

    S = \int_{}^{}{v(t)}dt = \int_{}^{}(3t +
2)dt = \frac{3t^{2}}{2} + 2t + c

    S(2) = 10 \Rightarrow \frac{3.2^{2}}{2} +
2.2 + c = 10 \Rightarrow c = 0.

    \Rightarrow S = \frac{3t^{2}}{2} +
2t.

    Suy ra: Khi t = 30 s, vật đi được quãng đường

    s = \frac{3.30^{2}}{2} + 2.30 =
1410(m) m.

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{4} - t + 1S=2t4t+1, trong đó t được tính bằng giây và S được tính bằng mét. Vận tốc của chuyển động khi S = 2t^{4} - t + 1S=2t4t+1 là:

    Hướng dẫn:

    Ta có v = S' = 8t^{3} -
1

    Khi t = 1 \Rightarrow v = 8 - 1 =
7(m/s).

  • Câu 7: Vận dụng
    Tính quãng đường chuyển động

    Một ô tô đang chạy với vận tốc 10m/s thì tài xế đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 5t + 10(m/s)v(t)=5t+10(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Nguyên hàm của hàm vận tốc chính là quãng đường s(t) mà ô tô đi được sau quãng đường t giây kể từ lúc tài xế đạp phanh xe.

    Vào thời điểm người lái xe bắt đầu đạp phanh ứng với t = 0.

    Thời điểm ô tô dừng lại ứng với t_{1}, khi đó v\left( t_{1} ight) = 0 \Leftrightarrow t_{1} =
2.

    Vậy từ lúc đạp phanh đến khi dừng lại quãng đường ô tô đi được là:

    S = \int_{0}^{2}( - 5t + 10)dt = \left(
- \frac{5}{2}t^{2} + 10t ight)|_{0}^{2} = 10(m)

  • Câu 8: Vận dụng
    Tìm quãng đường vật đi được

    Giả sử một vật từ trạng thái nghỉ khi t =
0t=0 (s) chuyển động thẳng với vận tốc v(t) = t(5 - t)v(t)=t(5t) (m/s). Tìm quãng đường vật đi được cho đến khi nó dừng lại.

    Hướng dẫn:

    Ta có: S = \int_{}^{}{v(t)}dt =
\int_{}^{}{t(5 - t)}dt \Rightarrow S = \frac{5t^{2}}{2} -
\frac{t^{3}}{3}

    Khi vật dừng lại \Rightarrow v = t(5 - t)
= 0 \Rightarrow t = 5

    Khi đó S = \frac{5.5^{2}}{2} -
\frac{5^{3}}{3} = \frac{125}{6}(m)

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I(2;9)I(2;9) và trục đối xứng song song với trục tung như hình dưới. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.

    Hướng dẫn:

    Ta tìm được phương trình của parabol là

    (P):y = - \frac{3}{4}x^{2} + 3x +
6

    Như vậy, quãng đường s mà vật di chuyển được trong 3 giờ là:

    s = \int_{0}^{1}{\left( -
\frac{3}{4}t^{2} + 3t + 6 ight)dt} = \left( - \frac{x^{3}}{4} +
\frac{3x^{2}}{2} + 6x ight)|_{0}^{3}

    = \frac{99}{4} = 24,75(km)

  • Câu 10: Vận dụng
    Tính quãng đường S của viên đạn

    Một viên đạn được bắn theo phương thẳng đứng với vận tốc ban đầu 29,4 m/s. Gia tốc trọng trường là 9,8 m/s2. Tính quãng đường S viên đạn đi được từ lúc bắn lên cho đến khi chạm đất.

    Hướng dẫn:

    Ta có công thức liên hệ giữa vận tốc, gia tốc và quãng đường đi được là v^{2} - {v_{0}}^{2} = 2as

    \Rightarrow s = \frac{v^{2} -
{v_{0}}^{2}}{2a} = \frac{0 - 29,4^{2}}{- 2.9,8} = 44,1(m)

    Quãng đường đi được từ lúc bắn đến khi chạm đất là s = 44,1.2 = 88,2(m)

  • Câu 11: Thông hiểu
    Tính quãng đường chất điểm đi được

    Một chất điểm đang chuyển động với vận tốc {v_0} = 15v0=15 m/s thì tăng vận tốc với gia tốc a\left( t \right) = {t^2} + 4ta(t)=t2+4t (m/s2). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng vận tốc.

    Hướng dẫn:

    Ta có:

    v = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( t^{2} + 4t ight)dt}

    \Rightarrow v = 15 + \frac{t^{3}}{3} +
2t^{2}

    s = \int_{}^{}{vdt} \Rightarrow s =
15t + \frac{t^{4}}{12} + \frac{2t^{3}}{3}.

    Sau 3 giây, chất điểm đi được quãng đường:

    s(3) = 15.3 + \frac{3^{4}}{12} +
\frac{2.3^{3}}{3} = 69,75(m).

  • Câu 12: Thông hiểu
    Tính quãng đường xe phải đi

    Một chiếc ôtô sẽ chạy trên đường với vận tốc tăng dần đều với vận tốc v = 10tv=10t (m/s) t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu chạy. Hỏi quãng đường xe phải đi là bao nhiêu từ lúc xe bắt đầu chạy đến khi đạt vận tốc 20 (m/s)?

    Hướng dẫn:

    Ta có: s = \int_{}^{}{10t.dt} \Rightarrow
s = 5t^{2}.

    Khi v = 20m/s \Rightarrow t = 2
\Rightarrow s = 5.2^{2} = 20(m).

  • Câu 13: Thông hiểu
    Chọn phương trình quãng đường thích hợp

    Một chiếc ô tô đang đi trên đường với vận tốc v(t) = 2\sqrt{t};(0 \leq t \leq 30)v(t)=2t;(0t30) (m/s). Giả sử tại thời điểm t = 0t=0 thì s = 0s=0. Phương trình thể hiện quãng đường theo thời gian ô tô đi được là

    Hướng dẫn:

    Tương tự như ở ví dụ 1 thì ta có

    s(t) = \int_{}^{}{2\sqrt{t}dt} =
2\int_{}^{}{t^{\frac{1}{2}}dt} = 2.\frac{1}{\frac{1}{2} +
1}.t^{\frac{3}{2}} = \frac{4}{3}.\sqrt{t^{3}}(m) (m)

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Một ca nô đang chạy trên Hồ Tây với vận tốc 20 m/s thì hết xăng. Từ thời điểm đó, ca nô chuyển động chậm dần đều với vận tốc v(t) = - 5t + 20v(t)=5t+20 m/s, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc hết xăng. Hỏi từ lúc hết xăng đến lúc dừng hẳn, ca nô đi được bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn \Rightarrow v = 0
\Rightarrow t = 4(s).

    Phương trình quãng đường đi được của ca - nô từ khi hết xăng

    s = \int_{}^{}(20 - 5t)dt \Rightarrow s =
20t - \frac{5t^{2}}{2}

    Tại t = 4 \Rightarrow s = 40

    Suy ra: ca - nô đi được 40 mét

  • Câu 15: Nhận biết
    Tính gia tốc của chuyển động

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{3} - t + 1S=2t3t+1, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi t = 2st=2s là:

    Hướng dẫn:

    v = s' = 6{t^2} - 1

    a = v'' = 12t

    Khi t = 2 \Rightarrow a = 24\left( {m/{s^2}} ight)

  • Câu 16: Vận dụng
    Tính quãng đường người chạy được

    Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường thẳng parabol với I\left( \frac{1}{2};8 \right)I(12;8) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s người đó chạy được trong khoảng thời gian 45 phút, kể từ khi bắt đầu chạy

    Hướng dẫn:

    Ta tìm được phương trình của parabol là

    (P):v(t) = - 32t^{2} + 32t

    Quãng đường s mà người đó chạy được trong khoảng thời gian 0,75 (h) là:

    s = \int_{0}^{0,75}{\left( - 32t^{2} +
32t ight)dt}

    = \left( - \frac{32}{3}t^{3} + 16t^{2}
ight)|_{0}^{0,75} = 4,5(km)

  • Câu 17: Nhận biết
    Tính vận tốc chuyển động

    Cho một vật chuyển động có phương trình là: s = 2t^{3} - \frac{2}{t} + 3s=2t32t+3 (t được tính bằng giây, S tính bằng mét). Vận tốc của chuyển động thẳng t = 2st=2s là:

    Hướng dẫn:

    Ta có v = s' = 6t^{2} +
\frac{2}{t^{2}}

    Với t = 2 \Rightarrow v = 6.2^{2} +
\frac{2}{2^{2}} = \frac{49}{2}

  • Câu 18: Vận dụng
    Tìm quãng đường vật chuyển động

    Một vật chuyển động với vận tốc đầu bằng 0, vận tốc biến đổi theo quy luật, và có gia tốc a = 0,3a=0,3 (m/s2). Xác định quãng đường vật đó đi được trong 40 phút đầu tiên.

    Hướng dẫn:

    Ta có v(t) = \int_{}^{}{0,3dt} =
0,3t (do ban đầu vận tốc của vật bằng 0).

    Vậy quãng đường vật đi được trong 40 phút đầu tiên là:

    \int_{0}^{40.60}{0,3tdt} =
\frac{0,3}{2}.t^{2}|_{0}^{2400} = 864000(m)

  • Câu 19: Thông hiểu
    Chọn phương án thích hợp

    Một tàu lửa đang chạy với vận tốc 200 m/s thì người lái tàu đạp phanh; từ thời điểm đó, tàu chuyển động chậm dần đều với vận tốc v(t) = 200 - 20t(m/s)v(t)=20020t(m/s). Trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi thời gian khi tàu đi được quãng đường 750 m (kể từ lúc bắt đầu đạp phanh) ít hơn bao nhiêu giây so với lúc tàu dừng hẳn?

    Hướng dẫn:

    Khi tàu dừng hẳn: v = 0 \Rightarrow t =
10(s)

    S = \int_{}^{}{v(t)}dt = \int_{}^{}(200 -
2t)dt \Rightarrow s = 200t - t^{2}

    S = 750 \Rightarrow 200t - t^{2} = 750
\Leftrightarrow \left\lbrack \begin{matrix}
t = 15 > 0(ktm) \\
t = 5 \\
\end{matrix} ight.

    \Delta t = 10 - 5 = 5(s)

  • Câu 20: Thông hiểu
    Tính quãng đường ôtô di chuyển được

    Một ôtô đang chạy với vận tốc 19m/s thì người lái hãm phanh, ôtô chuyển động chậm dần đều với vận tốc v(t) =
- 38t + 19v(t)=38t+19 (m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ôtô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Khi ô tô dừng lại hẳn

    \Rightarrow v = 0 \Leftrightarrow 19 -
38t = 0 \Leftrightarrow t = \frac{1}{2}

    s = \int_{}^{}{(19 - 38t)dt} \Rightarrow
s = 19t - 19t^{2}

    t = \frac{1}{2} \Rightarrow s =
19.\frac{1}{2} - 19.\left( \frac{1}{2} ight)^{2} =
4,75(m)

  • Câu 21: Thông hiểu
    Tính vận tốc dự định của người đi xe đạp

    Một người đi xe đạp dự định trong buổi sáng đi hết quãng đường 60 km. Khi đi được \frac{1}{2}12 quãng đường, anh ta thấy vận tốc của mình chỉ bằng \frac{2}{3}23 vận tốc dự định, anh ta bèn đạp nhanh hơn vận tốc dự định 3km/h, đến nơi anh ta vẫn chậm mất 45 phút. Hỏi vận tốc dự định của người đi xe đạp là bao nhiêu?

    Hướng dẫn:

    Vận tốc dự định là v(km/h).

    Thời gian đi nửa quãng đường đầu t_{1} =
\frac{30}{\frac{2}{3}v} = \frac{45}{v}(h).

    Thời gian đi nửa quãng đường sau t_{2} =
\frac{30}{v + 3}(h).

    Ta có phương trình

    t_{1} + t_{2} = \frac{60}{v} - 0,75
\Leftrightarrow \frac{45}{v} + \frac{30}{v + 3} = \frac{60}{v} +
0,75

    Giải phương trình suy ra: v = 12 km/h.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (14%):
    2/3
  • Thông hiểu (48%):
    2/3
  • Vận dụng (38%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 1 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo

Nhiều người đang xem

🖼️

Chuyên đề Toán 12

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng