Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Toán 12: Tính tích phân có điều kiện

Tổng hợp bài tập trắc nghiệm Toán học 12 chuyên đề Tính tích phân có điều kiện, giúp học sinh luyện tập và củng cố hiệu quả kiến ​​thức lớp 12. Tài liệu đính kèm đáp án chi tiết, phù hợp để ôn thi THPT Quốc gia.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 30 câu
  • Điểm số bài kiểm tra: 30 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn kết luận đúng

    Cho \int_{0}^{\frac{1}{2}}{x^{n}dx} =
\frac{1}{64}\int_{1}^{5}\frac{dx}{2x - 1} = \ln m, với n, m là các số nguyên dương. Khi đó:

    Hướng dẫn:

    Ta có:

    \int_{0}^{\frac{1}{2}}{x^{n}dx} =
\frac{1}{64} \Rightarrow \left( \frac{1}{2} ight)^{n + 1}.\frac{1}{n +
1} = \frac{1}{64} \Rightarrow n = 3

    \int_{1}^{5}\frac{dx}{2x - 1} =
\frac{1}{2}\int_{1}^{5}\frac{d(2x - 1)}{2x - 1} = \left. \
\frac{1}{2}\ln|2x - 1| ight|_{1}^{5}

    = \frac{1}{2}ln9 - \frac{1}{2}ln1 =
ln3

    \Rightarrow m = n = 3

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Tích phân \int_{0}^{1}{xe^{- x^{2}}dx} bằng

    Hướng dẫn:

    Ta có:

    Cách 1: Thử bằng máy tính

    Cách 2: I =
\int_{0}^{1}{x.e^{- x^{2}}dx} = - \frac{1}{2}\int_{0}^{1}{( - 2x)e^{-
x^{2}}dx}

    = - \frac{1}{2}\int_{0}^{1}{e^{-
x^{2}}d\left( - x^{2} ight)} = \left. \  - \frac{1}{2}e^{- x^{2}}
ight|_{0}^{1} = - \frac{1}{2}.e^{- 1} + \frac{1}{2}

    = \frac{1}{2} - \frac{1}{2e} = \frac{e -
1}{2e}

  • Câu 3: Nhận biết
    Tính tích phân I

    Giả sử \int_{- 1}^{1}{f(t)dt} =
5\int_{- 1}^{3}{f(r)dr} =
6. Tính I =
\int_{1}^{3}{f(u)du}

    Hướng dẫn:

    Ta có: I = \int_{1}^{3}{f(u)du} = \int_{-
1}^{3}{f(u)du} - \int_{- 1}^{1}{f(u)du} = 6 - 5 = 1

  • Câu 4: Thông hiểu
    Chọn khẳng định đúng

    Kết quả tích phân I = \int_{0}^{1}{(2x +
3)e^{x}dx} được viết dưới dạng I =
ae + b với a, b là các số hữu tỉ. Tìm khẳng định đúng.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{(2x + 3).e^{x}dx} =
2\int_{0}^{1}{x.e^{x}dx} + 3\int_{0}^{1}{e^{x}dx}

    Tương tự các bài trên

    \Rightarrow \int_{0}^{1}{x.e^{x}dx} =
\left. \ x.e^{x} ight|_{0}^{1} - \int_{0}^{1}{e^{x}dx}

    \Rightarrow I = \left. \ 2x.e^{x}
ight|_{0}^{1} + \int_{0}^{1}{e^{x}dx} = 2x.e^{x} + \left. \ e^{x}ight|_{0}^{1} = 3e - 1

    a = 3;b = - 1

    Suy ra, đáp án B: a + 2b = 1

  • Câu 5: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số g(x) có đạo hàm trên đoạn \lbrack - 1;1brack. Có g( - 1) = 3 và tích phân I = \int_{- 1}^{1}{g'(x)dx} = - 2. Tính g(1).

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{1}{g'(x)dx} = - 2
\Leftrightarrow g(1) - g( - 1) = - 2

    \Rightarrow g(1) = - 2 + g( - 1) = - 2 +
3 = 1

  • Câu 6: Thông hiểu
    Tính tổng S

    Biết \int_{3}^{4}\frac{dx}{x^{2} + x} =
aln3 + bln4 + cln5, với a, b, c là các số nguyên. Tính S = a + b + c

    Hướng dẫn:

    Ta có:

    I = \int_{3}^{4}\frac{dx}{x^{2} + x} =
\int_{3}^{4}{\frac{1}{x(x + 1)}dx} = \int_{3}^{4}{\left( \frac{1}{x} -
\frac{1}{x + 1} ight)dx}

    = \left. \ \left( \ln|x| - \ln|x + 1|
ight) ight|_{3}^{4} = \ln4 - \ln5 - (\ln3 - \ln4)

    = - \ln3 + 2\ln4 - \ln5

    \Rightarrow S = a + b + c =
0

  • Câu 7: Thông hiểu
    Xác định giá trị tham số a

    Nếu \int_{0}^{a}{xe^{x}dx = 1} thì giá trị của a bằng:

    Hướng dẫn:

    Theo như biến đổi câu 1, ta có:

    I = \int_{0}^{a}{x.e^{x}dx} = \left. \
x.e^{x} ight|_{0}^{a} - \int_{0}^{a}e^{x}dx

    \Rightarrow = a.e^{a} - e^{a} + 1 =
1

    \Rightarrow a = 1

  • Câu 8: Nhận biết
    Tính tích phân I

    Biết \int_{0}^{1}{f(x)dx} = 2f(x) là hàm số lẻ. Khi đó I = \int_{- 1}^{0}{f(x)dx} có giá trị bằng

    Hướng dẫn:

    Ta có:

    f(x) là hàm số lẻ

    \Rightarrow \int_{- 1}^{0}{f(x)dx} = -
\int_{0}^{1}{f(x)dx} = - 2

  • Câu 9: Thông hiểu
    Tính tích phân

    Tính tích phân \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\frac{1 -
sin^{3}x}{sin^{2}x}dx}

    Hướng dẫn:

    Ta có:

    \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\left(
\frac{1}{sin^{2}x} - \sin x ight)dx} = - \left. \ \cot x
ight|_{\frac{\pi}{6}}^{\frac{\pi}{4}} + \left. \ \cos x
ight|_{\frac{\pi}{6}}^{\frac{\pi}{4}}

    = \frac{- 2 + \sqrt{2}}{2} +
\frac{\sqrt{3}}{2} = \frac{\sqrt{3} + \sqrt{2} - 2}{2}.

  • Câu 10: Thông hiểu
    Tính giá trị tích phân

    Tích phân \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\cot
x.dx} có giá trị bằng

    Hướng dẫn:

    Cách 1: Thử bằng máy tính

    Cách 2: Đặt \sin x = t \Rightarrow I =
\int_{\frac{1}{2}}^{\frac{\sqrt{2}}{2}}{\frac{1}{t}dt}

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Cho \int_{- 1}^{2}{f(x)}dx = 2\int_{- 1}^{2}{g(x)}dx = - 1. Tính I = \int_{- 1}^{2}{\left\lbrack x +
2f(x) - 3g(x) \right\rbrack dx}.

    Hướng dẫn:

    Ta có I = \int_{- 1}^{2}\left\lbrack x +
2f(x) - 3g(x) ightbrack dx

    = \int_{- 1}^{2}{xdx} + 2\int_{-
1}^{2}{f(x)}dx - 3\int_{- 1}^{2}{g(x)}dx

    \Rightarrow I = \left. \ \frac{x^{2}}{2}
ight|_{- 1}^{2} + 2.2 - 3( - 1) = \frac{3}{2} + 4 + 3 =
\frac{17}{2}

  • Câu 12: Thông hiểu
    Tìm hàm số không thích hợp

    Hàm số nào sau đây không là nguyên hàm của hàm số f(x) = \frac{x(x + 2)}{(x + 1)^{2}}?

    Hướng dẫn:

    Dễ nhận thấy \frac{x^{2}}{x + 1} + 1 =
\frac{x^{2} + x + 1}{x + 1}

    \frac{x^{2}}{x + 1} - 1 = \frac{x^{2} - x
- 1}{x + 1}

    Ta thấy 3 phương án \frac{x^{2} - x -
1}{x + 1}, \frac{x^{2} + x + 1}{x +
1}, \frac{x^{2}}{x + 1} có cùng đạo hàm.

    Vậy phương án \frac{x^{2} + x - 1}{x +
1} sai.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Tích phân I = \int_{0}^{1}{x\sqrt{x^{2} +
1}dx} có giá trị bằng

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{x\sqrt{x^{2} +
1}dx}

    Ta thử bằng máy tính để tìm ra kết quả.

  • Câu 14: Thông hiểu
    Tính giá trị biểu thức

    Biết tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} = a + be \left(
a\mathbb{\in Q};b\mathbb{\in Q} \right). Khi đó tích a.b có giá trị bằng

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{(2x + 1)e^{x}dx} =
\int_{0}^{1}{2xe^{x}dx} + \int_{0}^{1}{e^{x}dx}

    = \int_{0}^{1}{2xe^{x}dx} + e -
1

    Đặt \left\{ \begin{matrix}
e^{x}dx = dv \\
x = u \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
v = e^{x} \\
dx = du \\
\end{matrix} ight.

    I = 2\int_{0}^{1}{udv} + e - 1 = \left. \
2uv ight|_{0}^{1} - 2\int_{0}^{1}{vdu} + e - 1

    = \left. \ 2x.e^{x} ight|_{0}^{1} -
e\int_{0}^{1}{e^{x}dx} + e - 1 = e + 1

    \Rightarrow a = b = 1 \Rightarrow ab =
1.

  • Câu 15: Nhận biết
    Chọn phương án thích hợp

    Tìm tất cả các số thực m dương thỏa mãn \int_{0}^{m}\frac{x^{2}dx}{x + 1} = ln2 -
\frac{1}{2}?

    Hướng dẫn:

    Thử các đáp án, suy ra m = 1

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Tích phân I =
\int_{0}^{1}{\frac{x}{(x + 1)^{3}}dx} có giá trị là

    Hướng dẫn:

    Ta có: Thử máy tính.

    Gợi ý: I = \int_{0}^{1}{\left\lbrack
\frac{1}{(x + 1)^{2}} - \frac{1}{(x + 1)^{3}} ightbrack d(x +
1)}

  • Câu 17: Thông hiểu
    Tính tổng a và b

    Biết \int_{0}^{1}{\frac{x + 2}{x^{2} + 4x
+ 7}dx} = a\ln\sqrt{12} + b\ln\sqrt{7}, với a, b là các số nguyên. Tính tổng a + b bằng

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{x + 2}{x^{2} + 4x +
7}dx} = \frac{1}{2}.\int_{0}^{1}{\frac{2x + 4}{x^{2} + 4x +
7}dx}

    = \frac{1}{2}.\int_{0}^{1}\frac{d\left(
x^{2} + 4x + 7 ight)}{x^{2} + 4x + 7} = \left. \ \frac{1}{2}\ln\left(
x^{2} + 4x + 7 ight) ight|_{0}^{1}

    = \frac{1}{2}ln12 - \frac{1}{2}ln7 =
\ln\sqrt{12} - \ln\sqrt{7}

    \Rightarrow a = 1;b = - 1 \Rightarrow a +
b = 0

  • Câu 18: Thông hiểu
    Tính tích phân

    Tích phân I =
\int_{1}^{e}{2x\left( 1 - \ln x \right)dx} bằng

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{e}{2x\left( 1 - \ln x
ight)dx} = - \int_{1}^{e}{2x.lnxdx} + \int_{1}^{e}{2xdx}

    = e^{2} - 1 -
2\int_{1}^{e}{x.lnxdx}

    Đặt \left\{ \begin{matrix}
\ln x = u \\
xdx = dv \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\frac{1}{x}dx = du \\
\frac{x^{2}}{2} = v \\
\end{matrix} ight.

    \Rightarrow \int_{1}^{e}{x\ln xdx} =
\int_{1}^{e}{udv} = \left. \ uv ight|_{1}^{e} -
\int_{1}^{e}{vdu}

    = \left. \ \ln x.\frac{x^{2}}{2}
ight|_{1}^{e} - \int_{1}^{e}\frac{x}{2}dx

    = \frac{e^{2}}{2} - \frac{e^{2}}{4} +
\frac{1}{4} = \frac{e^{2}}{4} + \frac{1}{4}

    \Rightarrow I = e^{2} - 1 - \frac{e^{2} +
1}{2} = \frac{e^{2} - 3}{2}

  • Câu 19: Thông hiểu
    Tính tích phân I

    Cho tích phân I = \int_{0}^{3}{\frac{x}{1
+ \sqrt{x + 1}}dx} nếu đặt t =
\sqrt{x + 1} thì I =
\int_{1}^{2}{f(t)dt} trong đó

    Hướng dẫn:

    Ta có: I = \int_{0}^{3}{\frac{x}{1 +
\sqrt{x + 1}}dx}

    t = \sqrt{x + 1} \Rightarrow t^{2} = x +
1 \Rightarrow 2tdt = dx

    I = \int_{0}^{3}{\frac{x\left( 1 -
\sqrt{x + 1} ight)}{1 - (x + 1)}dx} = \int_{0}^{3}{\left( \sqrt{x + 1}
- 1 ight)dx}

    I = 2\int_{1}^{2}{(t - 1)tdt} =
\int_{1}^{2}{\left( t^{2} - 1 ight)2dt} \Rightarrow f(t) = 2t^{2} -
2t

  • Câu 20: Thông hiểu
    Tìm tham số a thỏa mãn điều kiện

    Giá trị dương a sao cho \int_{0}^{a}{\frac{x^{2} + 2x + 2}{x +
1}dx} = \frac{a^{2}}{2} + a + ln3

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{a}{\frac{x^{2} + 2x + 2}{x
+ 1}dx} = \int_{0}^{a}{\frac{(x + 1)^{2} + 1}{x + 1}dx}

    = \int_{0}^{a}{x + 1 + \frac{1}{x + 1}d(x
+ 1)}

    = \left. \ \frac{(x + 1)^{2}}{2}
ight|_{0}^{a} + \left. \ \ln|x + 1| ight|_{0}^{a} = \frac{(a +
1)^{2}}{2} - \frac{1}{2} + \ln|a + 1|

    = \frac{a^{2}}{2} + a + \ln|a +
1|

    \Rightarrow a + 1 = 3 \Rightarrow a =
2.

  • Câu 21: Thông hiểu
    Tìm tất cả các giá trị tham số a

    Có bao nhiêu số a \in (0;20\pi) sao cho \int_{0}^{a}{sin^{5}x.sin2xdx} =
\frac{2}{7}.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{a}{sin^{5}x.sin2xdx} =
2\int_{0}^{a}{sin^{6}x.cosxdx}

    = 2\int_{0}^{a}{sin^{6}x.d\left( \sin x
ight)} = \left. \ 2.\frac{sin^{7}x}{7} ight|_{0}^{a} =
\frac{2sin^{7}a}{7}

    I = \frac{2}{7} \Rightarrow \sin a = 1
\Rightarrow a = \frac{\pi}{2} + k2\pi

    a > 0 \Leftrightarrow \frac{\pi}{2} +
k2\pi > 0 \Rightarrow k2\pi > - \frac{\pi}{2} \Rightarrow k > -
\frac{1}{4}

    a < 20\pi \Rightarrow \frac{1}{2} + 2k
< 20 \Rightarrow k < \frac{39}{4}

    \Rightarrow k =
0;1;2;3;4;5;6;7;8;9 \Rightarrow Có 10 giá trị của a.

  • Câu 22: Vận dụng
    Tính giới hạn của tích phân

    Giá trị của \lim_{n ightarrow +
\infty}\int_{n}^{n + 1}{\frac{1}{1 + e^{x}}dx} bằng

    Hướng dẫn:

    Giải toán bằng hai cách như sau:

    Cách 1: Thử bằng máy tính

    Lấy giá trị n càng lớn càng tốt. Giả sử n = 100.

    Nhập biểu thức \int_{100}^{101}{\frac{1}{1 +
e^{x}}dx}

    Máy tính cho kết quả \approx 2.35 \times
10^{- 44} \approx 0.

    Cách 2: Giải chi tiết

    I = \int_{n}^{n + 1}{\left( \frac{1}{1 +
e^{x}} ight)dx} = \int_{n}^{n + 1}{1dx} - \int_{n}^{n +
1}{\frac{e^{x}}{1 + e^{x}}dx}

    = 1 - \int_{n}^{n + 1}{\frac{e^{x}}{1 +
e^{x}}dx}

    \Leftrightarrow I = 1 - \int_{n}^{n +
1}\frac{d\left( e^{x} + 1 ight)}{1 + e^{x}} = 1 - \left. \ \ln\left| 1
+ e^{x} ight| ight|_{n}^{n + 1}

    \Leftrightarrow I = 1 + \ln\left| 1 +
e^{n} ight| - \ln\left| 1 + e^{n + 1} ight|

    Ta luôn có \lim_{n ightarrow +
\infty}\frac{\ln\left( 1 + e^{n} ight)}{n} = 1

    \lim_{n ightarrow + \infty}\int_{n}^{n
+ 1}{\frac{1}{1 + e^{x}}dx} = \lim_{n ightarrow + \infty}\left\lbrack
1 + \ln\left| 1 + e^{n} ight| - \ln\left( 1 + e^{n + 1} ight)
ightbrack

    = 1 + \lim_{n ightarrow +
\infty}\frac{\ln\left( 1 + e^{n} ight)}{n}.n - \frac{\ln\left| 1 +
e^{n + 1} ight|}{n + 1}.(n + 1)

    = 1 + n - (n + 1) = 0

  • Câu 23: Thông hiểu
    Tính giá trị tích phân

    Tích phân \int_{0}^{2}{\sqrt{4 -
x^{2}}xdx} có giá trị bằng

    Hướng dẫn:

    Thử giải bài toán bằng hai cách:

    Cách 1: Thử bằng máy tính

    Cách 2: Đặt \sqrt{4 - x^{2}} = t

  • Câu 24: Nhận biết
    Tính tích phân I

    Cho \int_{1}^{2}{f(x)dx} = - 3. Tính I = \int_{2}^{4}{f\left( \frac{x}{2}
\right)dx}.

    Hướng dẫn:

    Ta có:

    Đặt \frac{x}{2} = t \Rightarrow dx =
2dt

    \Rightarrow I = \int_{1}^{2}{2f(t)dt} =
2\int_{1}^{2}{f(t)dt} = 2.( - 3) = - 6

  • Câu 25: Thông hiểu
    Tính giá trị của biểu thức S

    Biết rằng: \int_{0}^{ln2}{\left( x +
\frac{1}{2e^{x} + 1} \right)dx} = \frac{1}{2}ln^{a}2 + bln2 +
c\ln\frac{5}{3}. Trong đó a, b, c là những số nguyên. Khi đó S = a + b - c bằng

    Hướng dẫn:

    Ta có:

    \int_{0}^{ln2}\left( x + \frac{1}{2e^{x}
+ 1} ight)dx = \int_{0}^{ln2}{xdx} + \int_{0}^{ln2}{\frac{2e^{x} + 1 -
2e^{x}}{2e^{x} + 1}dx}

    = \int_{0}^{ln2}{(x + 1)dx} -
\int_{0}^{ln2}{\frac{2e^{x}}{2e^{x} + 1}dx}

    = \left. \ \left( \frac{x^{2}}{2} + x
ight) ight|_{0}^{ln2} - \int_{0}^{ln2}\frac{d\left( 2e^{x} + 1
ight)}{2e^{x} + 1}

    = \frac{ln^{2}2}{2} + ln2 - \left. \
\ln\left| 2e^{x} + 1 ight| ight|_{0}^{ln2}

    = \frac{ln^{2}2}{2} + ln2 - ln5 + ln3 =
\frac{ln^{2}2}{2} + ln2 - \ln\frac{5}{3}

    \Rightarrow a = 2;b = 1;c = - 1
\Rightarrow a + b - c = 4

  • Câu 26: Nhận biết
    Tính giá trị của c

    Giả sử \int_{1}^{5}\frac{dx}{2x - 1} =
\ln c. Giá trị của c

    Hướng dẫn:

    Ta có: \int_{1}^{5}\frac{dx}{2x - 1} =
ln3

  • Câu 27: Thông hiểu
    Tính tích phân I

    Cho \int_{0}^{6}{f(x)dx} = 12. Tính I = \int_{0}^{2}{f(3x)dx}

    Hướng dẫn:

    Ta có:

    Đặt t = 3x \Rightarrow dt = 3dx. Đổi cận:

    x = 0 \Rightarrow t = 0;x = 2 \Rightarrow
t = 6

    \Rightarrow I = \int_{0}^{2}{f(3x)dx} =
\frac{1}{3}\int_{0}^{6}{f(t)dt} =
\frac{1}{3}\int_{0}^{6}{f(x)dx}= \frac{1}{3}.12 = 4

  • Câu 28: Thông hiểu
    Tính giá trị biểu thức S

    Biết I = \int_{0}^{4}{x\ln(2x + 1)dx} =
\frac{a}{b}ln3 - c, trong đó a, b, c là các số nguyên dương và \frac{b}{c} là phân số tối giản. Tính S = a + b + c.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{4}{x\ln(2x +
1)dx}

    Đặt \left\{ \begin{matrix}
\ln(2x + 1) = u \\
xdx = dv \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\dfrac{2}{2x + 1}dx = du \\
\dfrac{x^{2}}{2} - \dfrac{1}{8} = v \\
\end{matrix} ight.

    I = \int_{0}^{4}{udv} = \left. \ uv
ight|_{0}^{4} - \int_{0}^{4}{vdu}

    = \left. \ \left( \frac{x^{2}}{2} -
\frac{1}{8} ight)\ln|2x + 1| ight|_{0}^{4} - \int_{0}^{4}{\left(
\frac{x^{2}}{2} - \frac{1}{8} ight).\frac{2}{2x + 1}dx}

    = \frac{63}{8}ln9 -
\int_{0}^{4}{\frac{4x^{2} - 1}{4(2x + 1)}dx} = \frac{63}{8}ln9 -
\frac{1}{4}\int_{0}^{4}{(2x - 1)dx}

    = \frac{63}{8}ln9 - \left. \
\frac{1}{4}\left( x^{2} - x ight) ight|_{0}^{4} = \frac{63}{4}ln3 -
3

    \Rightarrow a = 63;b = 4;c = 3
\Rightarrow S = 63 + 4 + 3 = 70

  • Câu 29: Thông hiểu
    Chọn phương án đúng

    Tính tích phân: \int_{0}^{1}{\frac{x}{\sqrt{x +
1}}dx}

    Hướng dẫn:

    Ta có hai cách giải bài toán như sau:

    Cách 1: Thử trực tiếp bằng máy tính

    Cách 2: Đặt \sqrt{x + 1} = t, biến đổi

  • Câu 30: Thông hiểu
    Tính giá trị của biểu thức

    Tính tích phân: I =
\int_{1}^{5}\frac{dx}{x\sqrt{3x + 1}} được kết quả I = aln3 + bln5. Giá trị a^{2} + ab + 3b^{2}

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{5}\frac{dx}{x\sqrt{3x +
1}}

    Đặt \sqrt{3x + 1} = t \Rightarrow 3x =
t^{2} \Rightarrow 3dx = 2tdt

    Đổi cận: x = 1 \Rightarrow t =
2

    x = 5 \Rightarrow t = 4

    I =
\frac{2}{3}\int_{2}^{4}\frac{tdt}{t\left( \frac{t^{2} - 1}{3} ight)} =
2\int_{2}^{4}\frac{dt}{(t - 1)(t + 1)}

    = \int_{2}^{4}\left( \frac{1}{t - 1} -
\frac{1}{t + 1} ight)dt

    = \left. \ \left( \ln|t - 1| - \ln|t + 1|
ight) ight|_{2}^{4} = 2ln3 - ln5

    \Rightarrow a = 2;b = - 1 \Rightarrow
a^{2} + ab + 3b^{2} = 5

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (23%):
    2/3
  • Thông hiểu (73%):
    2/3
  • Vận dụng (3%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm