Diện tích hình phẳng giới hạn bởi đồ thị của hàm số
và đồ thị
của hàm số
bằng
Ta xét phương trình hoành độ giao điểm
Lúc này ta có
Ta bấm máy và cũng được kết quả như trên:
Tổng hợp bài tập trắc nghiệm Toán học 12 chuyên đề Ứng dụng hình học của tích phân, giúp học sinh luyện tập và củng cố hiệu quả kiến thức lớp 12. Tài liệu đính kèm đáp án chi tiết, phù hợp để ôn thi THPT Quốc gia.
Diện tích hình phẳng giới hạn bởi đồ thị của hàm số
và đồ thị
của hàm số
bằng
Ta xét phương trình hoành độ giao điểm
Lúc này ta có
Ta bấm máy và cũng được kết quả như trên:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và
:
Giao điểm tại
Cho hàm số . Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số
, trục tung, trục hoành và đường thẳng
Ta có:
Cho hình phẳng D giới hạn bởi đường cong , trục hoành và các đường thẳng
,
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường ,
,
và trục hoành khi quay quanh Ox là:
(đvtt).
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng và
, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x
là một hình chữ nhật có hai kích thước là x và
.
Ta có:
Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với ,
,
,
. Quay hình thang ABCD xung quanh trục Ox thì thể tích khối tròn xoay tạo thành bằng bao nhiêu?
Hình vẽ minh họa
Phương trình đường thẳng AB là:
Thể tích khối tròn xoay là:
Cho hình phẳng D giới hạn bởi đường cong , trục hoành và các đường thẳng
,
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường ,
,
và trục hoành khi quay quanh Ox là:
(đvtt).
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng
,
.
Xét phương trình hoành độ giao điểm .
Vậy diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng
,
được tính bởi công thức:
Đặt ;
Đặt
Khi đó
.
Vậy từ đây ta có .
Suy ra
Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị các hàm số và
quay quanh trục Ox.
Xét phương trình hoành độ giao điểm
Khi đó thể tích khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đồ thị hàm số
quay quanh trục Ox được tính bởi công thức
Ta thấy trên thì
, do vậy ta có công thức
(đvtt)
Diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
,
bằng
. Tìm k.
Kí hiệu đồ thị hàm số như sau:
Ta thấy hàm số luôn đồng biến trên
và có tâm đối xứng là
. Hình vẽ minh họa ở bên ta thấy với
thì
, với
thì
.
Vậy
Thể tích khối tròn xoay tạo thành khi quay quanh trục Ox hình phẳng được giới hạn bởi đồ thị hàm số và hai trục tọa độ là
Ta có:
cắt trục hoành tại điểm có hoành độ bằng 2
Thể tích
Sử dụng phương pháp tích phân thành phần
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và các trục tọa độ. Chọn kết quả đúng?
Ta có:
Công thức tính diện tích S của hình thang cong giới hạn bởi hai đồ thị ,
,
,
,
Đáp án đúng: .
Diện tích hình phẳng giới hạn bởi đường cong và đường thẳng
bằng S. Giá trị của S là
Ta có: Phương trình tung độ giao điểm
.
Diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
,
là
Ta có .
Diện tích hình phẳng giới hạn bởi nhánh đường cong với
, đường thẳng
và trục hoành bằng
Xét phương trình hoành độ giao điểm:
Ta có
Tính diện tích hình phẳng S giới hạn bởi đồ thị các hàm số và
, trục hoành và trục tung.
Giao điểm Nhẩm được nghiệm 1
Cho hình phẳng D giới hạn bởi đường cong , trục hoành và các đường thẳng
;
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường và trục hoành khi quay quanh Ox là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: