Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập Xác suất toàn phần Công thức Bayes mức độ VD - VDC

Luyện thi THPT Quốc gia toán xác suất nâng cao

Bạn đã làm quen với các bài toán xác suất cơ bản và thông hiểu, nhưng chưa thật sự tự tin khi gặp các câu hỏi ở mức vận dụng và vận dụng cao trong đề thi THPT Quốc gia? Bài viết dưới đây sẽ là tài liệu không thể thiếu dành cho bạn! Chúng tôi đã chọn lọc và hệ thống các bài tập xác suất toàn phần, công thức Bayes mức độ VD – VDC, bám sát cấu trúc đề thi thật, có đáp án và lời giải chi tiết. Đây là chuyên đề toán 12 giúp bạn luyện tập chuyên sâu, rèn kỹ năng tư duy logic và phân tích xác suất hiệu quả. Hãy bắt đầu chinh phục điểm 9 – 10 ngay hôm nay!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 23 câu
  • Điểm số bài kiểm tra: 23 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Chọn đáp án đúng

    Giả sử tỉ lệ người dân của tỉnh X nghiện thuốc lá là 20\%. Tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, còn tỉ lệ này đối với người không nghiện thuốc lá là 15\%. Gặp ngẫu nhiên một người dân của tỉnh X, biết rằng người này bị bệnh phổi, tính xác suất mà người này nghiện thuốc lá?

    Hướng dẫn:

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra \overline{A} là biến cố “người không nghiện thuốc lá”.

    Gọi B là biến cố “người bị bệnh phổi”.

    Ta có:

    P(B) = P(A).P\left( B|A \right) +
P\left( \overline{A} \right).P\left( B|\overline{A}
\right).

    Theo bài ra có

    P(A) = 0,2\ ;\ P\left( B|A\right) = 0,7\ ;\ P\left( \overline{A} \right) = 0,8\ ;\ P\left(B|\overline{A} \right) = 0,15.

    Vậy P(B) = P(A).P\left( B|A \right) +
P\left( \overline{A} \right).P\left( B|\overline{A} \right)

    = 0,2.0,7 + 0,8.0,15 = 0,26.

    Theo công thức Bayes, ta có:

    P\left( A|B
\right) = \frac{P(A).P\left( B|A \right)}{P(B)} = \frac{0,2.0,7}{0,26} =
\frac{7}{13}

    Như vậy trong số người bị bệnh phổi của tỉnh X, có khoảng \frac{7}{13} số người nghiện thuốc lá.

  • Câu 2: Vận dụng
    Tính xác suất chọn học sinh theo yêu cầu

    Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh tại trường X . Nhóm này có 70\% học sinh là nam. Kết quả khảo sát cho thấy có 30\% học sinh nam và 15\% học sinh nữ biết chơi ít nhất một nhạc cụ. Chọn ngẫu nhiên một học sinh trong nhóm này. Tính xác suất để chọn được học sinh biết chơi ít nhất một nhạc cụ.

    Hướng dẫn:

    Xét phép thử chọn ngẫu nhiên một học sinh trong nhóm.

    Gọi A là biến cố "Chọn được một học sinh biết chơi ít nhất một nhạc cụ" và B,\overline{B} lần lượt là các biến cố "Chọn được một học sinh nam" và "Chọn được một học sinh nữ".

    Theo đề bài:

    P(B) = 70\% =
0,7;P(\overline{B}) = 1 - 0,7 = 0,3;

    P(A \mid B) = 30\% = 0,3;P(A \mid
\overline{B}) = 15\% = 0,15.

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B) \cdot P\left( A\mid B
\right) + P\left( \overline{B} \right) \cdot P\left( A\mid\overline{B}
\right)

    = 0,7 \cdot 0,3 + 0,3 \cdot 0,15 =
0,255.

    Vậy xác suất để chọn được một học sinh biết chơi nhạc cụ là 0,255.

  • Câu 3: Vận dụng
    Tính giá trị của biểu thức

    Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng. Biết xác suất để ít nhất 1 lần lấy được bóng đèn loại I bằng \frac{a}{b}(với a,blà các số nguyên dương và \frac{a}{b} là phân số tối giản). Tính a - b.

    Hướng dẫn:

    Xét các biến cố:

    A: "Lần thứ nhất lấy được bóng đèn loại II";

    B: "Lần thứ hai lấy được bóng đèn loại II".

    Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: P(A) = \frac{2}{20} = \frac{1}{10}.

    Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp.

    Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II, là P(B \mid A) = \frac{1}{19}.

    Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:

    P(C) = P(A \cap B) = P(A) \cdot P(B \mid
A) = \frac{1}{10} \cdot \frac{1}{19} = \frac{1}{190}.

    Vậy để ít nhất 1 lần lấy được bóng đèn loại I là:

    P\left(
\overline{C} \right) = 1 - P(C) = 1 - \frac{1}{190} =
\frac{189}{190}.

    Suy ra a = 189,b = 190 \Rightarrow a - b
= - 1.

  • Câu 4: Vận dụng
    Tính xác suất để lấy được viên bi màu đỏ

    Một chiếc hộp có 20 viên bi, trong đó có 12 viên bi màu đỏ và 8 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Minh lấy 1 viên bi từ hộp sau đó bạn Châu lấy viên bi thứ hai. Tính xác suất để bạn Châu lấy được viên bi màu đỏ.

    Hướng dẫn:

    Xét hai biến cố : A: “ Bạn Châu lấy được viên bi màu đỏ”

    B: “ Bạn Minh lấy được viên bi màu đỏ”

    Khi đó ta có:

    P(B) = \frac{12}{20} =
\frac{3}{5},P\left( \overline{B} \right) = 1 - P(B) =
\frac{2}{5},

    P\left( A|B \right) =
\frac{11}{19},P\left( A|\overline{B} \right) =
\frac{12}{19}

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B \right) + P\left(
\overline{B} \right).P\left( A|\overline{B} \right) = \frac{3}{5}.\frac{11}{19} +
\frac{2}{5}.\frac{12}{19} = \frac{3}{5}

  • Câu 5: Vận dụng cao
    Tìm xác suất để bi lấy ra màu trắng

    Có 3 hộp đựng bi giống nhau, mỗi hộp đựng 5 bi trắng và 7 bi đỏ có cùng kích thước, và trọng lượng. Lần thứ nhất lấy 1 bi từ hộp I bỏ sang hộp II, lần thứ hai lấy 1 từ hộp II bỏ sang hộp III. Cuối cùng lấy 1 bi từ hộp III ra ngoài. Tính xác suất để bi lấy ra đó là bi trắng. (làm tròn kết quả đến hàng phần trăm)

    Hướng dẫn:

    Gọi A_{i} là biến cố bi lấy ra từ hộp thứ i (i = 1;2;3) là bi trắng.

    Ta thấy \left\{ A_{2};\overline{A_{2}}
\right\} là họ đầy đủ.

    Nên ta có xác suất toàn phần

    P\left( A_{3} \right) = P\left( A_{2}
\right).P\left( A_{3}|A_{2} \right) + P\left( \overline{A_{2}}
\right).P\left( A_{3}|\overline{A_{2}} \right) (*)

    Lại có \left\{ A_{1};\overline{A_{1}}
\right\} là họ đầy đủ.

    Nên ta có xác suất toàn phần:

    P\left( A_{2} \right) = P\left( A_{1}
\right).P\left( A_{2}|A_{1} \right) + P\left( \overline{A_{1}}
\right).P\left( A_{2}|\overline{A_{1}} \right)

    = \frac{5}{12}.\frac{6}{13} +
\frac{7}{12}.\frac{5}{13} = \frac{5}{12}

    Khi đó P\left( \overline{A_{2}} \right) =
1 - P\left( A_{2} \right) = \frac{7}{12}

    Do đó từ (*) ta có P\left( A_{3} \right)
= \frac{5}{12}.\frac{6}{13} + \frac{7}{12}.\frac{5}{13} = \frac{5}{12}
\approx 0,42

  • Câu 6: Vận dụng cao
    Tính xác suất để cuộc gọi là đúng

    Một ứng dụng được sử dụng để chặn cuộc gọi rác trong điện thoại. Tuy nhiên, vì ứng dụng không tuyệt đối hoàn hảo nên một cuộc gọi rác bị chặn với xác suất 0,8 và một cuộc gọi đúng (không phải là cuộc gọi rác) bị chặn với xác suất 0,01. Thống kê cho thấy tỉ lệ cuộc gọi rác là 10\%. Chọn ngẫu nhiên một cuộc gọi không bị chặn. Xác suất để đó là cuộc gọi đúng là

    Hướng dẫn:

    Gọi A là biến cố: “cuộc gọi được chọn là cuộc gọi rác”, B là biến cố: “cuộc gọi được chọn bị chặn” thì \overline{B} là biến cố: “cuộc gọi được chọn không bị chặn”.

    Theo đầu bài ta có: P(A) = 0,1; P\left( \overline{A} \right) = 0,9; P\left( \left. \ B \right|A \right) =
0,8; P\left( \left. \ B
\right|\overline{A} \right) = 0,01.

    Ta có:

    P(B) = P\left( \left. \ B \right|A
\right).P(A) + P\left( \left. \ B \right|\overline{A} \right).P\left(
\overline{A} \right)

    = 0,8.0,1 + 0,01.0,9 =
0,089.

    P\left( \left. \ B \right|\overline{A}
\right) = 0,01 \Rightarrow P\left( \left. \ \overline{B}
\right|\overline{A} \right) = 0,99

    P\left( \left. \ B \right|A \right) = 0,8
\Rightarrow P\left( \left. \ \overline{B} \right|A \right) =
0,2

    Theo công thức Bayes ta có:

    P\left( \left. \ \overline{A}
\right|\overline{B} \right) = \frac{P\left( \overline{A} \right).P\left(
\left. \ \overline{B} \right|\overline{A} \right)}{P\left( \overline{A}
\right).P\left( \left. \ \overline{B} \right|\overline{A} \right) +
P(A).P\left( \left. \ \overline{B} \right|A \right)}

    = \frac{0,9.0,99}{0,9.0,99 + 0,1.0,2} =
\frac{891}{911}.

  • Câu 7: Vận dụng
    Tính xác suất để viên bi lấy ra màu đỏ

    Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai. Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.

    Hướng dẫn:

    Gọi A là biến cố “lấy được một viên bi màu xanh ở hộp thứ nhất“ và B là biến cố “lấy được hai viên bi màu đỏ ở hộp thứ hai”

    Khi đó ta có P(A) = \frac{1}{3}, P\left( B|A \right) =
\frac{C_{7}^{2}}{C_{11}^{2}} = \frac{21}{55}.

    Suy ra P\left( \overline{A} \right) = 1 -
P(A) = \frac{2}{3}; P\left(
B|\overline{A} \right) = \frac{C_{8}^{2}}{C_{11}^{2}} =
\frac{28}{55}.

    Áp dụng công thức xác suất toàn phần ta có

    P(B) = P(A)P\left( B|A \right) + P\left(\overline{A} \right)P\left( B|\overline{A} \right)=\frac{1}{3}.\frac{21}{55} + \frac{2}{3}.\frac{28}{55} =\frac{7}{15}.

  • Câu 8: Vận dụng
    Tính xác suất chọn được hướng dẫn viên theo yêu cầu

    Trong một đoàn du lịch đi tham quan Hội An, gồm có 10 nam và 12 nữ, hướng dẫn viên du lịch chọn ngẫu nhiên từ danh sách đoàn lần lượt 2 người. Tính xác suất để hướng dẫn viên chọn được lần 2 là người nam. (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Gọi A là biến cố: "Lần thứ nhất chọn được người nam";

    Gọi Blà biến cố: " Lần thứ hai chọn được người nam ". Ta cần tính P(B).

    Ta có: P(A) = \frac{10}{22} =
\frac{5}{11};\ P\left( \overline{A} \right) = 1 - \frac{5}{11} =
\frac{6}{11}.

    Nếu lần thứ nhất chọn được người nam thì còn lại 21 người, trong đó có 9 người nam, suy ra P\left( B|A \right) =
\frac{9}{21} = \frac{3}{7}.

    Nếu lần thứ nhất chọn được người nữ thì còn lại 21 người, trong đó có 10 người nam, suy ra P\left( B|\overline{A}
\right) = \frac{10}{21}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = \frac{5}{11}.\frac{3}{7} +
\frac{6}{11}.\frac{10}{21} = \frac{5}{11} \simeq 0,45.

  • Câu 9: Vận dụng
    Tính xác suất chọn được học sinh thỏa mãn yêu cầu

    Tại trường THPT có 20\% học sinh tham gia câu lạc bộ bơi lội, trong số học sinh đó có 85\% học sinh biết bơi ếch. Ngoài ra, có 10\% số học sinh không tham gia câu lạc bộ bơi lội cũng biết bơi ếch. Chọn ngẫu nhiên 1 học sinh của trường. Giả sử học sinh đó biết bơi ếch. Xác suất chọn được học sinh thuộc câu lạc bộ bơi lội là bao nhiêu?

    Hướng dẫn:

    Xét các biến cố: A: "Chọn được học sinh thuộc câu lạc bộ bơi lội ";

    B: “Chọn được học sinh biết bơi ếch”.

    Khi đó P(A) = 0,2;\ \ P\left(
\overline{A} \right) = 0,8;\ \ P\left( B|A \right) = 0,85;\ \ P\left(
B|\overline{A} \right) = 0,1.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A \right) + P\left(\overline{A} \right).P\left( B|\overline{A} \right)= 0,2.0,85 + 0,8.0,1= 0,25.

    Theo công thức Bayes, xác suất chọn được học sinh thuộc câu lạc bộ bơi lội, biết học sinh đó biết bơi ếch là:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(B)} = \frac{0,2.0,85}{0,25} = 0,68.

  • Câu 10: Vận dụng cao
    Tính xác suất theo yêu cầu

    Một loại linh kiện do hai nhà máy số I và số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I và II lần lượt là 4\%3\%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?

    Hướng dẫn:

    Xét hai biến cố sau: A: ‘‘Linh kiện lấy ra do nhà máy I sản xuất”,

    B: ‘‘Linh kiện lấy ra là phế phẩm”

    Trong lô linh kiện có tổng cộng 80 + 120
= 200 linh kiện nên P(A) =
\frac{80}{200} = 0,4;P\left(
\overline{A} \right) = 0,6.

    Vì tỉ lệ phế phẩm của các nhà máy I và II lần lượt là 4\%3\% nên P\left( B|A \right) = 4\% = 0,04

    Khi đó: P\left( B|\overline{A} \right) =
3\% = 0,03.

    Ta có sơ đồ cây:

    A diagram of a triangle with Great Pyramid of Giza in the backgroundDescription automatically generated

    Khi linh kiện lấy ra là phế phẩm thì xác suất linh kiện đó do nhà máy I sản xuất là P\left( A|B \right) và xác suất linh kiện đó do nhà máy II sản xuất là P\left( \overline{A}|B \right).

    Áp dụng công thức Bayes, ta có:

    P\left( A|B \right) = \frac{P(A).P\left(B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}\right).P\left( B|\overline{A} \right)}= \frac{0,4.0,04}{0,4.0,04 +0,6.0,03} \approx 47\%.

    Suy ra P\left( \overline{A}|B \right) = 1
- P\left( A|B \right) \approx 53\%.

    Vậy xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.

  • Câu 11: Vận dụng cao
    Tính xác suất của biến cố

    Bạn Tuấn hằng ngày ăn sáng bằng xôi hoặc bún. Nếu hôm nay bạn ăn sáng bằng xôi thì xác suất để hôm sau bạn ăn sáng bằng bún là 0,7. Xét một tuần mà thứ ba bạn ăn sáng bằng xôi. Biết xác suất để thứ năm tuần đó, bạn Tuấn ăn sáng bằng bún là 0,63. Hỏi nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là

    Hướng dẫn:

    Giả sử nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là x (x < 1).

    Gọi A là biến cố “Thứ tư, bạn Tuấn ăn sáng bằng bún”,

    B là biến cố “Thứ năm, bạn Tuấn ăn sáng bằng bún”, khi đó P(B) =
0,63

    Ta cần tính P\left(\overline{B}|A \right)

    Ta có thứ ba bạn Tuấn ăn sáng bằng xôi nên P(A) = 0,7, P\left( \overline{A} \right) = 1 - 0,7 =
0,3

    Vì nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là x và ăn sáng bằng bún là 1 - x hay P\left( B|A \right) = 1 - x.

    Ta có P\left( B|\overline{A} \right) =
0,7

    Theo công thức xác suất toàn phần:

    P(B) = P(A).P\left( B|A \right) +P\left( \overline{A} \right).P\left( B|\overline{A}\right)

    \Rightarrow 0,63 = 0,7.(1 - x) +
0,3.0,7

    \Rightarrow x = 0,4

    Vậy nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là 0,4.

  • Câu 12: Vận dụng cao
    Tính xác suất thu được tín hiệu A

    Một trạm chỉ phát hai tín hiệu AB với xác suất tương ứng 0,85 và 0,15 do có nhiễu trên đường truyền nên \frac{1}{7} tín hiệu A bị méo và thu được như tín hiệu B; còn \frac{1}{8} tín hiệu B bị méo thành và thu được nhưA. Xác suất thu được tín hiệu A

    Hướng dẫn:

    Gọi A là biến cố “Phát tín hiệu A

    Gọi B là biến cố “Phát tín hiệu A

    Gọi T_{A} là biến cố “Phát được tín hiệu A

    Gọi T_{B} là biến cố “Phát được tín hiệu B

    Ta cần tính P\left( T_{A}
\right)

    Với P\left( T_{A} \right) = P(A).P\left(
T_{A}|A \right) + P(B).P\left( T_{A}|B \right)

    Ta có: P(A) = 0,85

    P\left( T_{B}|A \right) = \frac{1}{7}
\Rightarrow P\left( T_{A}|A \right) = 1 - \frac{1}{7} =
\frac{6}{7}; P(B) = 0,15; P\left( T_{A}|B \right) = \frac{1}{8}

    Do đó, xác suất thu được tín hiệu A là:

    P\left( T_{A} \right) = P(A).P\left(
T_{A}|A \right) + P(B).P\left( T_{A}|B \right)

    = 0,85.\frac{6}{7} + 0,15.\frac{1}{8} =
\frac{837}{1120}

  • Câu 13: Vận dụng
    Tính xác suất lấy được viên bi đánh số

    Một hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số. Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số bằng

    Hướng dẫn:

    Gọi A là biến cố “viên bi được lấy ra có đánh số”.

    Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra \overline{B} là biến cố “viên bi được lấy ra có màu vàng”.

    Lúc này ta đi tính P(A) theo công thức:

    P(A) = P(B).P\left( A|B \right) + P\left(
\overline{B} \right).P\left( A|\overline{B} \right).

    Ta có:P(B) = \frac{50}{80} =
\frac{5}{8}.

    P\left( \overline{B} \right) =
\frac{30}{80} = \frac{3}{8}.

    P\left( A|B \right) = 60\% =
\frac{3}{5}.

    P\left( A|\overline{B} \right) = 100\% -
50\% = \frac{1}{2}.

    Vậy P(A) = P(B).P\left( A|B \right) +P\left( \overline{B} \right).P\left( A|\overline{B} \right)=\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =\frac{9}{16}.

  • Câu 14: Vận dụng cao
    Chọn đáp án đúng

    Một thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo Y0,5\%. Biết rằng, có một loại xét nghiệm mà nếu mắc bệnh hiểm nghèo Y thì với xác suất 94\% xét nghiệm cho kết quả dương tính; nếu không bị bệnh hiểm nghèo Y thì với xác suất 97\% xét nghiệm cho kết quả âm tính. Hỏi khi một người xét nghiệm cho kết quả dương tính thì xác suất mắc bệnh hiểm nghèo Y của người đó là bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm)?

    Hướng dẫn:

    Xét hai biến cố A: ‘‘Người được chọn ra bị mắc bệnh hiểm nghèo Y”,

    B: ‘‘Người được chọn ra có xét nghiệm cho kết quả dương tính”

    Do tỉ lệ người mắc bệnh hiểm nghèo Y0,5\% =
0,005 nên trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo Y của một người là P(A) = 0,005.

    Khi đó: P\left( \overline{A} \right) = 1
- P(A) = 1 - 0,005 = 0,995.

    Nếu mắc bệnh hiểm nghèo Y thì với xác suất 94\% xét nghiệm cho kết quả dương tính

    Khi đó: P\left( B|A \right) = 94\% =
0,94.

    Nếu không bị bệnh hiểm nghèo Y thì với xác suất 97\% xét nghiệm cho kết quả âm tính

    Khi đó: P\left( \overline{B}|\overline{A}
\right) = 97\% = 0,97

    Ta có sơ đồ hình cây như sau

    A diagram of a triangle with Great Pyramid of Giza in the backgroundDescription automatically generated

    Ta thấy xác suất mắc bệnh hiểm nghèo Y của một người khi xét nghiệm cho kết quả dương tính là P\left( A|B
\right). Áp dụng công thức Bayes, ta có:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)}

    = \frac{0,005.0,94}{0,005.0,94 +
0,995.0,03} \approx 13,6\%.

    Vậy xác suất mắc bệnh hiểm nghèo Y của một người khi xét nghiệm cho kết quả dương tính là 13,6\%

  • Câu 15: Vận dụng
    Tìm xác suất để lấy được quả bóng màu trắng

    Có hai chiếc hộp đựng bóng. Hộp I có 7 quả bóng trắng và 8 quả bóng xanh. Hộp II có 5 quả bóng trắng và 3 quả bóng xanh. Trước tiên, từ hộp I lấy ra ngẫu nhiên 1 quả bóng rồi cho vào hộp II. Sau đó, từ hộp II lấy ra ngẫu nhiên 1 quả bóng. Xác suất để quả bóng được lấy ra màu trắng là

    Hướng dẫn:

    Gọi A là biến cố: “Lấy được quả bóng trắng từ hộp I”.

    Gọi B là biến cố: “Lấy được quả bóng trắng từ hộp II”.

    Theo công thức xác suất toàn phần

    P(B) = P(A).P\left( B\left| A
\right.\  \right) + P\left( \overline{A} \right).P\left( B\left|
\overline{A} \right.\  \right)

    Ta có P(A) = \frac{7}{15}; P\left( \overline{A} \right) = 1 - P(A) = 1 -
\frac{7}{15} = \frac{8}{15}.

    Nếu A xảy ra thì hộp II có 6 quả bóng trắng và 3 quả bóng xanh.

    Vậy P\left( B\left| A \right.\  \right) =
\frac{6}{9} = \frac{2}{3}.

    Nếu A không xảy ra thì hộp II có 5 quả bóng trắng và 4 quả bóng xanh.

    Vậy P\left( B\left| \overline{A}
\right.\  \right) = \frac{5}{9}.

    Vậy P(B) = \frac{7}{15}.\frac{2}{3} +
\frac{8}{15}.\frac{5}{9} = \frac{82}{135}.

  • Câu 16: Vận dụng cao
    Tính xác suất để linh kiện là phế phẩm

    Một xưởng sản xuất linh kiện điện tử có hai dây chuyền A và B. Dây chuyền A sản xuất 70\% số linh kiện, dây chuyền B sản xuất 30\% số linh kiện. Tỷ lệ phế phẩm của dây chuyền A là 3\%, của dây chuyền B là 5\%. Chọn ngẫu nhiên một linh kiện. Tính xác suất để linh kiện đó là phế phẩm.

    Hướng dẫn:

    Gọi biến cố A: “Linh kiện được sản xuất từ dây chuyền A”.

    Biến cố B: “Linh kiện được sản xuất từ dây chuyền B”.

    Biến cố H: “Linh kiện là phế phẩm”.

    Ta có P(A) = 0,7;P(B) = 0,3;P\left( H|A
\right) = 0,03;P\left( H|B \right) = 0,05

    Áp dụng công thức xác suất toàn phần, ta có xác suất để linh kiện đó là phế phẩm là:

    P(H) = P(A).P\left( H|A \right) +
P(B).P\left( H|B \right)

    = 0,7.0,03 + 0,3.0,05 = 0,036 =
3,6\%.

  • Câu 17: Vận dụng cao
    Chọn đáp án đúng

    Giả sử có một loại bệnh S mà tỉ lệ người mắc bệnh là 0,1\%. Giả sử có một loại xét nghiệm, mà ai mắc bệnh S khi xét nghiệm cũng có phản ứng dương tính, nhưng tỉ lệ phản ứng dương tính giả là 5\% (tức là trong số những người không bị bệnh S có 5\% số người xét nghiệm lại có phản ứng dương tính). Khi một người xét nghiệm có phản ứng dương tính thì khả năng mắc bệnh S của người đó là bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm)?

    Hướng dẫn:

    Gọi A là biến cố: “Người đó mắc bệnh S”

    B là biến cố: “Người đó xét nghiệm có phản ứng dương tính”.

    Ta cần tính P\left( A|B
\right).

    Ta có: P(A) = 0,001; P\left( \overline{A} \right) = 1 - P(A) = 1 -
0,001 = 0,999;

    P\left( B|A \right)
= 1; P\left( B|\overline{A} \right)
= 0,05.

    Thay vào công thức Bayes ta được:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)}

    = \frac{0,001.1}{0,001.1 + 0,999.0,05} =
\frac{20}{1019} \approx 1,96\%.

  • Câu 18: Vận dụng cao
    Tính xác suất của biến cố

    Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 35\%, máy II sản xuất 65\% tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là 0,3\% 0,7\%. Chọn ngẫu nhiên 1 sản phẩm từ kho. Tính xác suất để chọn được phế phẩm do máy I sản xuất?

    Hướng dẫn:

    Gọi A_{1}là biến cố “Sản phẩm được chọn do máy I sản xuất”

    A_{2} là biến cố “Sản phẩm được chọn do máy II sản xuất”

    B là biến cố “Sản phẩm được chọn là phế phẩm”

    Suy ra A_{1}|B là biến cố “chọn được phế phẩm do máy I sản xuất”

    Ta có P\left( A_{1} \right) =
0,35, P\left( A_{2} \right) =
0,65, P\left( B|A_{1} \right) =
0,003, P\left( B|A_{2} \right) =
0,007

    P(B) = P\left( B|A_{1} \right).P\left(
A_{1} \right) + P\left( B|A_{2} \right).P\left( A_{2} \right) =
0,0056

    Theo công thức Bayes có:

    P\left( A_{1}|B \right) = \frac{P\left(
B|A_{1} \right).P\left( A_{1} \right)}{P(B)} = 0,1875.

  • Câu 19: Vận dụng
    Tính xác suất người được chọn mắc bệnh A

    Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là 65\%. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A5\%; trong số những người chưa tiêm, tỉ lệ mắc bệnh A17\%. Chọn ngẫu nhiên một người ở địa phương đó. Tính xác suất người được chọn mắc bệnh A.

    Hướng dẫn:

    Gọi X là biến cố “Người dân được tiêm phòng bệnh A

    Y là biến cố “Người dân mắc bệnh A”.

    Ta có P(X) = 0,65 \Rightarrow P\left( \overline{X}
\right) = 0,35.

    Tỉ lệ mắc bệnh khi tiêm phòng là: P\left(
Y|X \right) = 0,05.

    Tỉ lệ mắc bệnh khi chưa tiêm phòng là P\left( Y|\overline{X} \right) =
0,17.

    Xác suất người này mắc bệnh A là:

    P(Y) = P(X).P\left( Y|X \right) +
P\left( \overline{X} \right).P\left( Y|\overline{X} \right)

    = 0,65.0,05 + 0,35.0,17 =
0,092

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Tại công ty Yến Sào, có hai thùng I và II chứa các hộp đựng yến sào có khối lượng và hình dạng như nhau. Thùng I có 5 hộp yến từ tự nhiên và 4 hộp yến nuôi, thùng 2 có 6 hộp yến từ tự nhiên và 8 hộp yến nuôi. Lấy ngẫu nhiên 1 hộp từ thùng I bỏ sang thùng II. Sau đó, lấy ngẫu nhiên 1 hộp từ thùng II để sử dụng. Xác suất lấy được hộp yến từ tự nhiên ở thùng II là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Hướng dẫn:

    Xét các biến cố: A: "Lấy được 1 hộp yến tự nhiên từ thùng I sang thùng II";

    B: "Lây được 1 hộp yến tự nhiên từ thùng II".

    Khi đó, P(A) = \frac{5}{9};\ \ P\left(
\overline{A} \right) = \frac{4}{9}; P\left( B|A \right) = \frac{7}{15}; P\left( B|\overline{A} \right) = \frac{6}{15} =
\frac{2}{5}

    Theo công thức xác suất toàn phần, xác suất của biến cố B là:

    P(B) =P(A).P\left( B|A \right) + P\left( \overline{A} \right).P\left(B|\overline{A} \right)= \frac{5}{9}.\frac{7}{15} +\frac{4}{9}.\frac{2}{5} \approx 0,44.

  • Câu 21: Vận dụng cao
    Xác định giá trị gần nhất của a

    Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,1\%. Giả sử có một loại xét nghiệm, mà ai mắc bệnh khi xét nghiệm thì có 95\% phản ứng dương tính, nhưng tỉ lệ phản ứng dương tính giả là 8\% (tức là trong số những người không bị bệnh có 8\% số người xét nghiệm lại có phản ứng dương tính). Biết khi một người xét nghiệm có phản ứng dương tính thì khả năng mắc bệnh của người đó là a\
\%. Hỏi a gần số nào nhất trong các số sau?

    Hướng dẫn:

    Gọi A là biến cố “Người được chọn ra không mắc bệnh”, khi đó P(A) = 1 -
0,1\% = 0,999, P\left( \overline{A}
\right) = 0,001.

    B là biến cố “Người được chọn ra có phản ứng dương tính”, khi đó P\left( B|A
\right) = 8\% = 0,08P\left(
B|\overline{A} \right) = 0,95

    Khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính là P\left( \overline{A}|B \right)

    Theo công thức Bayes, ta có

    P\left( \overline{A}|B \right) =
\frac{P\left( \overline{A} \right).P\left( B|\overline{A}
\right)}{P\left( \overline{A} \right).P\left( B|\overline{A} \right) +
P(A).P\left( B|A \right)}

    = \frac{0,001.0,95}{0,001.0,95 +
0,999.0,08} = \frac{95}{8087} \approx 1,17\%

    Vậy khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính là 1,17\%.

  • Câu 22: Vận dụng cao
    Tính xác suất theo yêu cầu

    Một kho hàng có 85\% sản phẩm loại I và 15\% sản phẩm loại II, trong đó có 1\% sản phẩm loại I bị hỏng, 4\% sản phẩm loại II bị hỏng. Các sản phẩm có kích thước và hình dạng như nhau. Một khách hàng chọn ngẫu nhiên 1 sản phẩm. Tính xác suất để sản phẩm đó loại I và sản phẩm đó không bị hỏng. (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Xét các biến cố:

    A: "Khách hàng chọn được sản phẩm loại I ";

    B: "Khách hàng chọn được sản phẩm không bị hỏng".

    Ta có: P(A) = 0,85; P\left( \overline{A} \right) = 0,15;\ P\left( B|A\right) = 1 - P\left( \overline{B}|A \right) = 1 - 0,01 =0,99;

    P\left( B|\overline{A} \right) = 1 -
P\left( \overline{B}|\overline{A} \right) = 1 - 0,04 =
0,96.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,85.0,99 + 0,15.0,96 =
0,9855

    Theo công thức Bayes, ta có:

    P\left( A|B
\right) = \frac{P(A).P\left( B|A \right)}{P(B)} =
\frac{0,85.0,99}{0,9855} \approx 0,85.

  • Câu 23: Vận dụng
    Tính xác suất để chọn được trứng không bị ung

    Một cửa hàng bán trứng gà, có hai loại trứng, trong đó có 65\% loại trứng gà Mỹ và 35\%trứng gà Nga, các trứng có kích thước như nhau. Các trứng gà Mỹ có tỉ lệ bị ung (hư) là 2\% và các trứng gà Nga có tỉ lệ bị ung là 3\%. Một khách hàng chọn mua ngấu nhiên 1 trứng gà từ cửa hàng. Tính xác suất để chọn được trứng không bị ung. (Kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Xét các biến cố:

    A: "Khách hàng chọn được loại trứng gà Mỹ ";

    B: "Khách hàng chọn được loại trứng gà không bị ung".

    Ta có: P(A) = 0,65;\ P\left( \overline{A}
\right) = 0,35;

    P\left( B|A \right) = 1 - P\left(
\overline{B}|A \right) = 1 - 0,02 = 0,98;

    P\left( B|\overline{A} \right) = 1 -
P\left( \overline{B}|\overline{A} \right) = 1 - 0,03 = 0,97

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,65.0,98 + 0,35.0,97 = 0,9765 \approx
0,98.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (48%):
    2/3
  • Thông hiểu (52%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Bài viết nhiều người xem

🖼️

Chuyên đề Toán 12

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng