Giải bài tập SBT Toán 8 bài 11: Chia đa thức cho đơn thức
Bài tập môn Toán lớp 8
Giải bài tập SBT Toán 8 bài 11: Chia đa thức cho đơn thức được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 8. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.
Giải bài tập SBT Toán 8 bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Giải bài tập SBT Toán 8 bài 10: Chia đơn thức cho đơn thức
Giải bài tập SBT Toán 8 bài 12: Chia đa thức một biến đã sắp xếp
Câu 1: Thực hiện phép tính:
a, (7.35 – 34 + 36) : 34
b, (163 – 642) : 83
Lời giải:
a, (7.35 – 34 + 36) : 34
= (7.35 : 34) + (– 34 : 34 + (36 : 34)
= 7.3 – 1 + 32
= 21 – 1 + 9 = 29
b, (163 – 642) : 83
= [(2.8)3 – (82)2] : 83
= (23.83 – 84) : 83
= (23.83 : 83) + (- 84 : 83)
= 23 – 8 = 8 – 8 = 0
Câu 2: Làm tính chia:
a, (5x4 – 3x3 + x2) : 3x2
b, (5xy2 + 9xy – x2y2) : (- xy)
c, (x3y3 - 1/2 x2y3 – x3y2) : 1/3 x2y2
Lời giải:
a, (5x4 – 3x3 + x2) : 3x2
= (5x4 : 3x2) + (– 3x3 : 3x2 ) + (x2 : 3x2) = 53 x2 – x + 13
b, (5xy2 + 9xy – x2y2) : (- xy)
= [5xy2 : (- xy)] + [9xy : (- xy)] + [(- x2y2) : (- xy)] = - 5y – 9 + xy
c, (x3y3 - 1/2 x2y3 – x3y2) : 1/3 x2y2
= (x3y3 : 1/3 x2y2) + (- 1/2 x2y3 : 1/3 x2y2) + (– x3y2 : 13 x2y2)
= 3xy - 3/2 y – 3x
Câu 3: Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên)
a, (5x3 – 7x2 + x) : 3xn
b, (13x4y3 – 5x3y3 + 6x2y2) : 5xnyn
Lời giải:
a, Vì đa thức (5x3 – 7x2 + x) chia hết cho 3xn nên hạng tử x chia hết cho 3xn ⇒ 0 ≤ n ≤ 1. Vậy n ∈ {0; 1}
b, Vì đa thức (13x4y3 – 5x3y3 + 6x2y2) chia hết cho 5xnyn nên hạng tử 6x2y2 chia hết cho 5xnyn ⇒ 0 ≤ n ≤ 2. Vậy n ∈ {0;1;2}
Câu 4: Làm tính chia:
a, [5(a – b)3 + 2(a – b)2] : (b – a)2
b, 5(x – 2y)3 : (5x – 10y)
c, (x3 + 8y3) : (x + 2y)
Lời giải:
a, [5(a – b)3 +2(a – b)2] : (b – a)2
= [5(a – b)3 +2(a – b)2] : (a - b)2 = 5(a – b) + 2
b, 5(x – 2y)3 : (5x – 10y) = 5(x – 2y)3 : 5(x – 2y) = (x – 2y)2
c, (x3 + 8y3) : (x + 2y) = [x3 + (2y)3] : (x + 2y)
= (x + 2y)(x2 – 2xy + 4y2) : (x + 2y) = x2 – 2xy + 4y2