Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Giải bài tập SBT Toán 8 bài 5: Phương trình chứa dấu giá trị tuyệt đối

Lớp: Lớp 8
Môn: Toán
Dạng tài liệu: Giải bài tập
Loại File: Word + PDF
Phân loại: Tài liệu Tính phí

Bài tập môn Toán lớp 8

Giải bài tập SBT Toán 8 bài 5: Phương trình chứa dấu giá trị tuyệt đối được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 8. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Giải bài tập SBT Toán 8 bài 3: Bất phương trình một ẩn

Giải bài tập SBT Toán 8 bài 4: Bất phương trình bậc nhất một ẩn

Giải bài tập SBT Toán 8 bài: Ôn tập chương 4

Câu 1: Giải các phương trình:

a, |0,5x| = 3 – 2x

b, |-2x| = 3x + 4

c, |5x| = x – 12

d, |-2,5x| = 5 + 1,5x

Lời giải:

a, Ta có: |0,5x| = 0,5 khi 0,5x ≥ 0 ⇒ x ≥ 0

|0,5x| = -0,5 khi 0,5x < 0 ⇒ x < 0

Ta có: 0,5x = 3 – 2x ⇔ 0,5x + 2x = 3 ⇔ 2,5x = 3 ⇔ x = 1,2

Giá trị x = 1,2 thỏa mãn điều kiện x ≥ 0 nên 1,2 là nghiệm của phương trình.

-0,5x = 3 – 2x ⇔ -0,5x + 2x = 3 ⇔ 1,5x = 3 ⇔ x = 2

Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên loại.

Vậy tập nghiệm của phương trình là S = {1,2}

b, Ta có:|-2x| = -2x khi -2x ≥ 0 ⇒ x ≤ 0

|-2x| = 2x khi -2x < 0 ⇒ x > 0

Ta có: 2x = 3x + 4 ⇔ 2x – 3x = 4 ⇔ -x = 4 ⇔ x = -4

Câu 2: Giải các phương trình:

a, |9 + x| = 2x

b, |x – 1| = 3x + 2

c, |x + 6| = 2x + 9

d, |7 – x| = 5x + 1

Lời giải:

a, Ta có: |9 + x| = 9 + x khi 9 + x ≥ 0 ⇒ x ≥ -9

|9 + x| = - (9 + x) khi 9 + x < 0 ⇒ x < -9

Ta có: 9 + x = 2x ⇔ 9 = 2x – x ⇔ x = 9

Giá trị x = 9 thỏa mãn điều kiện x ≥ -9 nên 9 là nghiệm của phương trình.

- (9 + x) = 2x

⇔ -9 = 2x + x

⇔ -9 = 3x

⇔ x = -3

Giá trị x = -3 không thỏa mãn điều kiện x < -9 nên loại.

Vậy Tập nghiệm của phương trình: S = {9}

b, Ta có: |x – 1| = x – 1 khi x – 1 ≥ 0

⇒ x ≥ 1

|x – 1| = 1 – x khi x – 1 < 0

⇒x < 1

Ta có: x – 1 = 3x + 2

⇔ x – 3x = 2 + 1

⇔ x = -1,5

Giá trị x = -1,5 không thỏa mãn điều kiện x ≥ 1 nên loại.

1 – x = 3x + 2

⇔ -x – 3x = 2 – 1

⇔ -4x = 1

⇔ x = -0,25

Giá trị x = -0,25 thỏa mãn điều kiện x < 1 nên -0,25 là nghiệm của phương trình.

Vậy tập nghiệm của phương trình là S = {-0,25}.

c, Ta có: |x + 6| = x + 6 khi x + 6 ≥ 0

⇒ x ≥ -6

|x + 6| = -x – 6 khi x + 6 < 0

⇒ x < -6

Ta có: x + 6 = 2x + 9

⇔ x – 2x = 9 – 6

⇔ -x = 3

⇔ x = -3

Giá trị x = -3 thoả mãn điều kiện x ≥ -6 nên -3 là nghiệm của phương trình.

-x – 6 = 2x + 9

⇔ -x – 2x = 9 + 6

⇔ -3x = 15

⇔ x = -5

Giá trị x = -5 không thỏa mãn điều kiện x < -6 nên loại.

Vậy tập nghiệm của phương trình: S = {-6}

d, Ta có: |7 – x| = 7 – x khi 7 – x ≥ 0

⇒ x ≤ 7

|7 – x| = x – 7 khi 7 – x < 0

⇒ x > 7

Ta có: 7 – x = 5x + 1

⇔ 7 – 1 = 5x + x

⇔ 6x = 6

⇔ x = 1

Giá trị x = 1 thỏa điều kiện x ≤ 7 nên 1 là nghiệm của phương trình.

x – 7 = 5x + 1

⇔ x – 5x = 1 + 7

⇔ -4x = 8

⇔ x = -2

Giá trị x = -2 không thỏa mãn điều kiện x > 7 nên loại.

Vậy tập nghiệm của phương trình là S = {1}

Câu 3: Giải các phương trình:

a, |5x| - 3x – 2 = 0

b, x – 5x + |-2x| - 3 = 0

c, |3 – x| + x2 – (4 + x)x = 0

d, (x – 1)2 + |x + 21| - x2 – 13 = 0

Lời giải:

a, Ta có: |5x| = 5x khi 5x > 0 ⇒ x ≥ 0

|5x| = -5x khi 5x < 0 ⇒ x < 0

Ta có: 5x – 3x – 2 = 0

⇔ 2x = 2

⇔ x = 1

Giá trị x = 1 thỏa mãn điều kiện x ≥ 0 nên 1 là nghiệm của phương trình.

-5x – 3x – 2 = 0

⇔ -8x = 2

⇔ x = -0,25

Giá trị x = -0,25 thỏa mãn điều kiện x < 0 nên -0,25 là nghiệm của phương trình.

Vậy tập nghiệm của phương trình là S = {1; -0,25}

b, Ta có: |-2x| = -2x khi -2x ≥ 0 ⇒ x ≤ 0

|-2x| = 2x khi -2x < 0 ⇒ x > 0

Ta có: x – 5x – 2x – 3 = 0

⇔ -6x = 3

⇔ x = -0,5

Giá trị x = -0,5 thỏa mãn điều kiện x ≤ 0 nên -0,5 là nghiệm của phương trình.

x – 5x + 2x – 3 = 0

⇔ -2x = 3

⇔ x = -1,5

Giá trị x = -1,5 không thỏa mãn điều kiện x > 0 nên loại.

Vậy tập nghiệm của phương trình là S = {-0,5}

c, Ta có: |3 – x| = 3 – x khi 3 – x ≤ 0 ⇒ x ≤ 3

|3 – x| = x – 3 khi 3 – x < 0 ⇒ x > 3

Ta có: 3 – x + x2 – (4 + x)x = 0

⇔ 3 – x + x2 – 4x – x2 = 0

⇔ 3 – 5x = 0

⇔ x = 0,6

Giá trị x = 0,6 thỏa mãn điều kiện x ≤ 3 nên 0,6 là nghiệm của phương trình.

x – 3 + x2 – (4 + x)x = 0

⇔ x – 3 + x2 – 4x – x2 = 0

⇔ -3x – 3 = 0

⇔ x = 1

Giá trị x = 1 không thỏa mãn điều kiện x > 3 nên loại.

Vậy tập nghiệm của phương trình là S = {0,6}

d, Ta có: |x + 21| = x + 21 khi x + 21 ≥ 0 ⇒ x ≥ -21

|x + 21| = -x – 21 khi x + 21 < 0 ⇒ x < -21

Ta có: (x – 1)2 + x + 21 – x2 – 13 = 0x

⇔ x2 – 2x + 1 + x + 21 – x2 – 13 = 0

⇔ -x + 9 = 0

⇔ x = 9

Giá trị x = 9 thỏa mãn điều kiện x ≥ -21 nên 9 là nghiệm của phương trình.

(x – 1)2 – x – 21 – x2 – 13 = 0

⇔ x2 – 2x + 1 – x – 21 – x2 – 13 = 0

⇔ -3x – 53 = 0

⇔ x = - 53/3

Giá trị x = - 53/3 không thỏa mãn điều kiện x < -21 nên loại.

Vậy tập nghiệm của phương trình là S = {9}

Câu 4: Giải các phương trình:

a, |x – 5| = 3

b, |x + 6| = 1

c, |2x – 5| = 4

d, |3 – 7x| = 2

Lời giải:

a, Ta có: |x – 5| = x – 5 khi x – 5 ≥ 0 ⇒ x ≥ 5

|x – 5| = 5 – x khi x – 5 < 0 ⇒ x < 5

Ta có: x – 5 = 3

⇔ x = 8

Giá trị x = 8 thỏa mãn điều kiện x ≥ 5 nên 8 là nghiệm của phương trình.

5 – x = 3

⇔ 5 – 3 = x

⇔ x = 2

Giá trị x = 2 thỏa mãn điều kiện x < 5 nên 2 là nghiệm của phương trình.

Vậy tập nghiệm của phương trình là S = {8; 2}

b, Ta có: |x + 6| = x + 6 khi x + 6 ≥ 0 ⇒ x ≥ -6

|x + 6| = -x – 6 khi x + 6 < 0 ⇒ x < -6

Ta có: x + 6 = 1

⇔ x = -5

Giá trị x = -5 thỏa mãn điều kiện x ≥ -6 nên -5 là nghiệm của phương trình.

-x – 6 = 1

⇔ -x = 1 + 6

⇔ -x = 7

⇔ x = -7

Giá trị x = -7 thỏa mãn điều kiện x < -6 nên -7 là nghiệm của phương trình.

Vậy tập nghiệm của phương trình là S = {-5; -7}

c, Ta có: |2x – 5| = 2x – 5 khi 2x – 5 ≥ 0 ⇒ x ≥ 2,5

|2x – 5| = 5 – 2x khi 2x – 5 < 0 ⇒ x < 2,5

Ta có: 2x – 5 = 4

⇔ 2x = 9

⇔ x = 4,5

Giá trị x = 4,5 thỏa mãn điều kiện x ≥ 2,5 nên 4,5 là nghiệm của phương trình.

5 – 2x = 4

⇔ -2x = -1

⇔ x = 0,5

Giá trị x = 0,5 thỏa mãn điều kiện x < 2,5 nên 0,5 là nghiệm của phương trình.

Vậy tập nghiệm của phương trình là S = {4,5; 0,5}

d, Ta có: |3 – 7x| = 3 – 7x khi 3 – 7x ≥ 0 ⇒ x ≤ 3/7

|3 – 7x| = 7x – 3 khi 3 – 7x < 0 ⇒ x < 3/7

Ta có: 3 – 7x = 2

⇔ -7x = -1

⇔ x = 1/7

Giá trị x = 1/7 thỏa mãn điều kiện x ≤ 3/7 nên 1/7 là nghiệm của phương trình.

7x – 3 = 2

⇔ 7x = 5

⇔ x = 5/7

Giá trị x = 5/7 thỏa mãn điều kiện x > 3/7 nên 5/7 là nghiệm của phương trình.

Vậy tập nghiệm của phương trình là S = {1/7 ; 5/7}

Câu 5: Giải các phương trình:

a, |3x – 2| = 2x

b, |4 + 2x| = -4x

c, |2x – 3| = x + 21

d, |3x – 1| = x – 2

Lời giải:

a, Ta có: |3x – 2| = 3x – 2 khi 3x – 2 ≥ 0 ⇒ x ≥ 2/3

|3x – 2| = 2 – 3x khi 3x – 2 < 0 ⇒ x < 2/3

Ta có: 3x – 2 = 2x

⇔ x = 2

Giá trị x = 2 thỏa mãn điều kiện x ≥ 2/3 nên 2 là nghiệm của phương trình.

2 – 3x = 2x

⇔ 2 = 5x

⇔ x = 2/5

Giá trị x = 2/5 thỏa mãn điều kiện x < 2/3 nên 2/5 là nghiệm của phương trình.

Vậy tập nghiệm của phương trình là S = {2; 2/5 }

b, Ta có: |4 + 2x| = 4 + 2x khi 4 + 2x ≥ 0 ⇒ x ≥ -2

|4 + 2x| = -4 – 2x khi 4 + 2x < 0 ⇒ x < -2

Ta có: 4 + 2x = - 4

⇔ 6x = - 4

⇔ x = - 2/3

Giá trị x = - 2/3 thỏa mãn điều kiện x ≥ -2 nên - 2/3 là nghiệm của phương trình.

-4 – 2x = -4x

⇔ -4 = -2x

⇔ x = 2

Giá trị x = 2 không thỏa mãn điều kiện x < -2 nên loại.

Vậy tập nghiệm của phương trình là S = {-2/3 }

c, Ta có: |2x – 3| = 2x – 3 khi 2x – 3 ≥ 0 ⇒ x ≥ 1,5

|2x – 3| = 3 – 2x khi 2x – 3 < 0 ⇒ x < 1,5

Ta có: 2x – 3 = -x + 21

⇔ 3x = 24

⇔ x = 8

Giá trị x = 8 thỏa mãn điều kiện x ≥ 1,5 nên 8 là nghiệm của phương trình.

3 – 2x = -x + 21

⇔ -x = 18

⇔ x = -18

Giá trị x = -18 thỏa mãn điều kiện x < 1,5 nên -18 là nghiệm của phương trình.

Vậy tập nghiệm của phương trình là S = {8; -18}

d, Ta có: |3x – 1| = 3x – 1 khi 3x – 1 ≥ 0 ⇒ x ≥ 1/3

|3x – 1| = 1 – 3x khi 3x – 1 < 0 ⇒ x < 1/3

Ta có: 3x – 1 = x – 2

⇔ 2x = -1

⇔ x = - 1/2

Giá trị x = - 1/2 không thỏa mãn điều kiện x ≥ 1/3 nên loại.

1 – 3x = x – 2

⇔ -3x – x = -2 – 1

⇔ -4x = -3

⇔ x = 3/4

Giá trị x = 3/4 không thỏa mãn điều kiện x < 1/3 nên loại.

Vậy phương trình đã cho vô nghiệm. Tập nghiệm là S = ∅

Câu 6: Với giá trị nào của x thì:

a, |2x –3| = 2x – 3

b, |5x – 4| = 4 – 5x

Lời giải:

a, Ta có: |2x – 3| = 2x – 3

⇒ 2x – 3 ≥ 0

⇔ 2x ≥ 3

⇔ x ≥ 1,5

Vậy với x ≥ 1,5 thì |2x – 3| = 2x – 3.

b, Ta có: |5x – 4| = 4 – 5x

⇒ 5x – 4 < 0

⇔ 5x < 4

⇔ x < 0,8

Vậy với x < 0,8 thì |5x – 4| = 4 – 5x.

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Giải Bài Tập Toán 8

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm