Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải bài tập SBT Toán 8 bài: Ôn tập chương II

Bài tập môn Toán lớp 8

Giải bài tập SBT Toán 8 bài: Ôn tập chương 2 được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 8. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Giải bài tập SBT Toán 8 bài 5: Diện tích hình thoi

Giải bài tập SBT Toán 8 bài 6: Diện tích đa giác

Giải bài tập SBT Toán 8 bài 1: Định lí Ta-lét trong tam giác

Câu 1: Cho tam giác ABC với ba đường cao AA’, BB’, CC’. Gọi H là trực tâm của tam giác đó. Chứng minh rằng

Bài tập toán lớp 8

Lời giải

Bài tập toán lớp 8

Câu 2: Cho tam giác ABC.

a, Tính tỉ số đường cao BB’, CC’ xuất phát từ đỉnh B, C

b, Tại sao nếu AB < AC thì BB' < CC’

Lời giải:

Bài tập toán lớp 8

Câu 3: Qua tâm O của hình vuông ABCD cạnh a, kẻ đường thắng l cắt cạnh AB và CD lần lượt tại M và N. Biết MN = b. Hãy tính tổng các khoảng cách từ các đỉnh của hình vuông đến đường thẳng l theo a và b (a và b có cùng đơn vị đo).

Lời giải:

Bài tập toán lớp 8

Gọi h1 và h2 là khoảng cách từ đỉnh B và đỉnh A đến đường thẳng l

Tổng khoảng cách là S.

Vì O là tâm đối xứng của hình vuông nên OM = ON (tính chất đối xứng tâm)

Suy ra AM = CN

Mà: ∠(AMP) = ∠(DNS) (đồng vị)

∠(DNS) = ∠(CNR) (đôi đỉnh)

Suy ra: ∠(AMP) = ∠(CNR)

Suy ra: ΔAPM = ΔCRN (cạnh huyền, góc nhọn)

⇒ CR = AP = h2

AM = CD ⇒ BM = DN

∠(BMQ) = ∠(DNS) (so le trong)

Suy ra: ΔBQM = ΔDSN (cạnh huyền, góc nhọn) ⇒ DS = BQ = h1

SBOA = 1/4 SAOB = 1/4 a2 (l)

SBOA = SBOM + SAOM = 1/2 .b/2 .h1 + 1/2 .b/2 .h2

Từ (1) va (2) suy ra h1 + h2 = a2b . Vậy : S = 2(h1 + h2) = 2a2b

Câu 4: Tam giác ABC có hai trung tuyến AM, BN vuông góc với nhau. Hãy tính diện tích tam giác đó theo AM và BN.

Lời giải:

Bài tập toán lớp 8

Tứ giác ẠBMN có hai đường chéo vuông góc.

Ta có: SABMN = 1/2 AM.BN

Δ ABM và Δ AMC có chung chiều cao kể từ A, cạnh đáy BM = MC nên: SABM = SAMC = 1/2 SABC

ΔMNA và ΔMNC có chung chiều cao kê từ M, cạnh đáy AN = NC nên: SMAN = SMNC = 1/2 SAMC = 1/4 SABC

SABMN = SABM + SMNA = 1/2 SABC + 1/4 SABC = 3/4 SABC

Vậy SABC = 4/3 SABMN = 4/3 .1/2 .AM.BN = 2/3 AM.BN

Câu 5: Cho tam giác ABC vuông tại A và có BC = 2AB, AB = a. Ở phía ngoài tam giác, ta vẽ hình vuông BCDE, tam giác đều ABF và tam giác đều AGC.

a, Tính các góc B, C, cạnh AC và diện tích tam giác ABC.

b, Chứng minh rằng FA vuông góc với BE và CG. Tính diện tích các tam giác FAG và FBE.

c, Tính diện tích tứ giác DEFCL

Lời giải:

Bài tập toán lớp 8

a, Gọi M là trung điểm của BG, ta có:

AM = MB = 1/2 BC = a (tính chất tam giác vuông)

Suy ra MA = MB = AB = a

Suy ra ΔAMB đều ⇒ ∠(ABC) = 60o

Mặt khác: ∠(ABC) = ∠(ACB) (tính chất tam giác vuông)

Suy ra: ∠(ACB) = 90o - ∠(ABC) = 90o – 60o = 30o

Trong tam giác vuông ABC, theo Pi-ta-go, ta có: BC2 = AB2+ AC2

⇒ AC2 = BC2 - AB2 = 4a2 - a2 = 3a2 ⇒ AC = a√3

Vậy SABC = 1/2 .AB.AC = Bài tập toán lớp 8

b, Ta có: ∠(FAB) = ∠(ABC) = 60o

FA // BC (vì có cặp góc ở vị trí so le trong bằng nhau)

BC ⊥ BE (vì BCDE là hình vuông)

Suy ra: FA ⊥ BE

BC ⊥ CD (vì BCDE là hình vuông)

Suy ra: FA ⊥ CD

Gọi giao điểm BE và FA là H, FA và CG là K.

⇒ BH ⊥ FA và FH = HA = a2 (tính chất tam giác đều)

∠(ACG) + ∠(ACB) + ∠(BCD) = 60o + 30o + 90o = 180o

⇒ G, C, D thẳng hàng

⇒ AK ⊥ CG và GK = KC = 1/2 GC = 1/2 AC = (a√3)/2

Bài tập toán lớp 8

Chia sẻ, đánh giá bài viết
1
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Giải SBT Toán 8

    Xem thêm