Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải bài tập SBT Toán 8 bài 3: Phương trình đưa về dạng ax + b = 0

Bài tập môn Toán lớp 8

Giải bài tập SBT Toán 8 bài 3: Phương trình đưa về dạng ax + b = 0 được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 8. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Giải bài tập SBT Toán 8 bài 1: Mở đầu về phương trình

Giải bài tập SBT Toán 8 bài 2: Phương trình bậc nhất một ẩn và cách giải

Giải bài tập SBT Toán 8 bài 4: Phương trình tích

Câu 1: Giải các phương trình sau:

a, 1,2 – (x – 0,8) = -2(0,9 + x)

b, 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x

c, 3(2,2 – 0,3x) = 2,6 + (0,1x – 4)

d, 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)

Lời giải:

a, 1,2 – (x – 0,8) = -2(0,9 + x) ⇔ 1,2 – x + 0,8 = -1,8 – 2x

⇔ -x + 2x = -1,8 – 2 ⇔ x = -3,8

Phương trình có nghiệm x = -3,8

b, 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x

⇔ 2,3x – 1,4 – 4x = 3,6 – 1,7x ⇔ 2,3x – 4x + 1,7x = 3,6 + 1,4

⇔ 0x = 5

Phương trình vô nghiệm

c, 3(2,2 – 0,3x) = 2,6 + (0,1x – 4)

⇔ 6,6 – 0,9x = 2,6 + 0,1x – 4 ⇔ 6,6 – 2,6 + 4 = 0,1x + 0,9x

⇔ x = 8

Phương trình có nghiệm x = 8

d, 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)

⇔ 3,6 – x – 0,5 = x – 0,5 + x ⇔ 3,6 – 0,5 + 0,5 = x + x + x

⇔ 3,6 = 3x ⇔ 1,2

Phương trình có nghiệm x = 1,2

Câu 2: Tìm điều kiện của x để giá trị mỗi phân thức sau xác định:

Bài tập toán lớp 8

Lời giải:

a, Phân thứcBài tập toán lớp 8 xác định khi:

2(x – 1) – 3(2x + 1) ≠ 0

Ta giải phương trình: 2(x – 1) – 3(2x + 1) = 0

Ta có: 2(x – 1) – 3(2x + 1) = 0 ⇔ 2x – 2 – 6x – 3 = 0

⇔ -4x – 5 = 0 ⇔ 4x = -5 ⇔ x = -54

Vậy khi x ≠ -54 thì phân thức A xác định.

b, Phân thức Bài tập toán lớp 8xác định khi:

1,2(x + 0,7) – 4(0,6x + 0,9) ≠ 0

Ta giải phương trình: 1,2(x + 0,7) – 4(0,6x + 0,9) = 0

Ta có: 1,2(x + 0,7) – 4(0,6x + 0,9) = 0

⇔ 1,2x + 0,84 – 2,4 – 3,6 = 0

⇔ -1,2x – 2,76 = 0 ⇔ x = -2,3

Vậy khi x ≠ -2,3 thì phân thức B xác định.

Câu 3: Giải các phương trình sau:

Bài tập toán lớp 8

Lời giải:

Bài tập toán lớp 8

⇔ 14(5x – 3) – 21(7x – 1) = 12(4x + 2) – 5.84

⇔ 70x – 42 – 147x + 21 = 48x + 24 – 420

⇔ 70x – 147x – 48x = 24 – 420 + 42 – 21

⇔ -125x = -375 ⇔ x = 3

Phương trình có nghiệm x = 3

Bài tập toán lớp 8

⇔ 5(3x – 9) + 2(4x – 10,5) = 4(3x + 3) + 6.20

⇔ 15x – 45 + 8x – 21 = 12x + 12 + 120

⇔ 15x + 8x – 12x = 12 + 120 + 45 + 21 ⇔ 11x = 198 ⇔ x = 18

Phương trình có nghiệm x = 18

Bài tập toán lớp 8

⇔ 5(6x + 3) – 5.20 = 4(6x – 2) – 2(3x + 2)

⇔ 30x + 15 – 100 = 24x – 8 – 6x – 4

⇔ 30x – 24x + 6x = -8 -4 – 15 + 100

⇔ 12x = 73 ⇔ x = 73/12

Phương trình có nghiệm x = 73/12

Bài tập toán lớp 8

⇔ 4(x + 1) + 3(6x + 3) = 2(5x + 3) + 7 + 12x

⇔ 4x + 4 + 18x + 9 = 10x + 6 + 7 + 12x

⇔ 4x + 18x – 10x – 12x = 6 + 7 – 4 – 9 ⇔ 0x = 0

Phương trình có vô số nghiệm.

Câu 4: Tìm giá trị của k sao cho:

a, Phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2.

b, Phương trình 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1.

Lời giải:

a, Thay x = 2 vào phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40, ta có:

(2.2 + 1)(9.2 + 2k) – 5(2 + 2) = 40

⇔ (4 + 1)(18 + 2k) – 5.4 = 40 ⇔ 5(18 + 2k) – 20 = 40

⇔ 90 + 10k – 20 = 40 ⇔ 10k = 40 – 90 + 20 ⇔ 10k = -30

⇔ k = -3

Vậy khi k = -3 thì phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2.

b, Thay x = 1 vào phương trình 2(2x + 1) + 18 = 3(x + 2)(2x + k), ta có:

2(2.1 + 1) + 18 = 3(1 + 2)(2.1 + k)

⇔ 2(2 + 1) + 18 = 3.3(2 + k) ⇔ 2.3 + 18 = 9(2 + k)

⇔ 6 + 18 = 18 + 9k ⇔ 24 – 18 = 9k ⇔ 6 = 9k ⇔ k = 69 = 23

Vậy khi k = 23 thì phương trình 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1.

Câu 5: Tìm các giá trị của x sao cho hai biểu thức A và B cho sau đây có giá trị bằng nhau:

a, A = (x – 3)(x + 4) – 2(3x – 2); B = (x – 4)2

b, A = (x + 2)(x – 2) + 3x2; B = (2x + 1)2 + 2x

c, A = (x – 1)(x2 + x + 1) – 2x; B = x(x – 1)(x + 1)

d, A = (x + 1)3 – (x – 2)3; B = (3x – 1)(3x + 1)

Lời giải:

a, Ta có: A = B ⇔ (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2

⇔ x2 + 4x – 3x – 12 – 6x + 4 = x2 – 8x + 16

⇔ x2 – x2 + 4x – 3x – 6x + 8x = 16 + 12 – 4

⇔ 3x = 24 ⇔ x = 8

Vậy với x = 8 thì A = B

b, Ta có: A = B ⇔ (x + 2)(x – 2) + 3x2 = (2x + 1)2 + 2x

⇔ x2 – 4 + 3x2 = 4x2 + 4x + 1 + 2x

⇔ x2 + 3x2 – 4x2 – 4x – 2x = 1 + 4 ⇔ -6x = 5 ⇔ x = - 5/6

Vậy với x = - 5/6 thì A = b,

c, Ta có: A = B ⇔ (x – 1)(x2 + x + 1) – 2x = x(x – 1)(x + 1)

⇔ x3 – 1 – 2x = x(x2 – 1) ⇔ x3 – 1 – 2x = x3 – x

⇔ x3 – x3 – 2x + x = 1 ⇔ -x = 1 ⇔ x = -1

Vậy với x = -1 thì A = B

d, Ta có: A = B ⇔ (x + 1)3 – (x – 2)3 = (3x – 1)(3x + 1)

⇔ x3 + 3x2 + 3x + 1 – x3 + 6x2 – 12x + 8 = 9x2 – 1

⇔ x3 – x3 + 3x2 + 6x2 – 9x2 + 3x – 12x = -1 – 1 – 8

⇔ -9x = -10 ⇔ x = 10/9

Vậy với x = 10/9 thì A = b,

Chia sẻ, đánh giá bài viết
6
Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Giải Bài Tập Toán 8

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng