Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải bài tập SBT Toán 8 bài 4: Khái niệm hai tam giác đồng dạng

Bài tập môn Toán lớp 8

Giải bài tập SBT Toán 8 bài 4: Khái niệm hai tam giác đồng dạng được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 8. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Giải bài tập SBT Toán 8 bài 2: Định lí đảo và hệ quả của định lí Ta-lét

Giải bài tập SBT Toán 8 bài 3: Tính chất đường phân giác của tam giác

Giải bài tập SBT Toán 8 bài 5: Trường hợp đồng dạng thứ nhất (c.c.c)

Câu 1: Cho hai tam giác A'B'C' và ABC đồng dạng với nhau theo tỉ số k. Chứng minh rằng tỉ số hai chu vi tam giác cũng bằng k.

Lời giải:

Vì ΔA'B'C' đồng dạng ΔABC theo tỉ số k nên ta có:

Bài tập toán lớp 8

Câu 2: Tam giác ABC có AB = 3cm, BC = 5cm, CA= 7cm. Tam gỉác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5cm.Tính các cạnh còn lại của tam giác A'B'C'.

Lời giải:

Tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất bằng 4,5 nên cạnh nhỏ nhất của Δ A'B'C' tương ứng với cạnh AB nhỏ nhất của ΔABC

Giả sử A'B' là cạnh nhỏ nhất 'của Δ A'B'C'

Bài tập toán lớp 8

Câu 3: Cho tam giác ABC có AB = 16,2cm, BC = 24,3cm, AC = 32,7cm. Tính độ dài các cạnh của tam giác A'B'C', biết rằng tam giác A'B'C đồng dạng với tam giác ABC và:

a, A'B' lớn hơn cạnh AB là 10,8cm.

b, A'B' bé hơn cạnh AB là 5,4cm.

Lời giải:

Bài tập toán lớp 8

Câu 4: Hình thang ABCD (AB // CD) có CD= 2AB. Gọi E là trung điểm của CD. Chứng minh rằng ba tam giác ADE, ABE và BEC đồng dạng với nhau từng đôi một.

Bài tập toán lớp 8

Lời giải:

Vì CD = 2AB (gt) nên AB = 1/2 CD

Vì E là trung điểm của CD nên DE = EC = 1/2 CD

Suy ra: AB = DE = EC

Hình thang ABCD có đáy AB = EC nên hai cạnh bên AE và BC song song với nhau

Xét ΔAEB và ΔCBE, ta có:

∠(ABE) = ∠( BEC)(So le trong)

∠(AEB) = ∠(EBC) (so le trong)

BE cạnh chung

⇒ΔAEB =ΔCBE (g.c.g) (1)

Hình thang ABED có đáy AB =DE nên hai cạnh bên AD và BE song song với nhau

Xét ΔAEB và ΔEAD, ta có:

∠(BAE) = ∠(AED)(so le trong)

∠ (AEB) = ∠(EAD) (so le trong)

AE cạnh chung

⇒Δ AEB =ΔEAD(g.c.g) (2)

Từ (1) và (2) suy ra: ΔAEB = ΔCBE = ΔEAD

Chia sẻ, đánh giá bài viết
2
Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Giải Bài Tập Toán 8

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng