Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 8 bài 5: Trường hợp đồng dạng thứ nhất

Giải Toán 8 bài 5: Trường hợp đồng dạng thứ nhất với các hướng dẫn giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 8. Lời giải Toán 8 gồm các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán. Mời các bạn tham khảo.

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 73:

Hai tam giác ABC và A’B’C’ có kích thước như trong hình 32 (có cùng đơn vị đo là xentimet)

Trên các cạnh AB và AC của tam giác ABC lần lượt lấy hai điểm M, N sao cho

AM = A’B’ = 2cm; AN = A’C’ = 3cm.

Tính độ dài đoạn thẳng MN.

Có nhận xét gì về mối quan hệ giữa các tam giác ABC, AMN, A’B’C’?

Câu hỏi 1 trang 73 SGK Toán 8 tập 2

Hướng dẫn giải:

Ta có: \begin{array}{l}\dfrac{{AM}}{{AB}} = \dfrac{{AN}}{{AC}} = \dfrac{1}{2}\\ \Rightarrow MN//BC\end{array}\(\begin{array}{l}\dfrac{{AM}}{{AB}} = \dfrac{{AN}}{{AC}} = \dfrac{1}{2}\\ \Rightarrow MN//BC\end{array}\) (theo định lý Talet đảo)

\begin{array}{l} \Rightarrow \dfrac{{AM}}{{AB}} = \dfrac{{AN}}{{AC}} = \dfrac{{MN}}{{BC}} = \dfrac{1}{2}\\ \Rightarrow MN = \dfrac{1}{2}BC = \dfrac{1}{2}.8 = 4\\\end{array}\(\begin{array}{l} \Rightarrow \dfrac{{AM}}{{AB}} = \dfrac{{AN}}{{AC}} = \dfrac{{MN}}{{BC}} = \dfrac{1}{2}\\ \Rightarrow MN = \dfrac{1}{2}BC = \dfrac{1}{2}.8 = 4\\\end{array}\)

Dễ dàng suy ra \Delta AMN = \Delta A\(\Delta AMN = \Delta A'B'C'\left( {c - c - c} \right)\).

Vậy \Delta AMN \sim \Delta A\(\Delta AMN \sim \Delta A'B'C'\)(*)

Xét tam giác ABC có MN // BC \Rightarrow \Delta AMN \sim \Delta ABC\(\Rightarrow \Delta AMN \sim \Delta ABC\) (**)

Từ (*) VÀ (**) \Rightarrow \Delta A\(\Rightarrow \Delta A'B'C' \sim \Delta ABC\)

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 74:

Tìm trong hình 34 các cặp tam giác đồng dạng:

Câu hỏi 2 trang 74 SGK Toán 8 tập 2

Hướng dẫn giải:

Ta có tam giác \Delta ABC \sim \Delta DEF\(\Delta ABC \sim \Delta DEF\)

Vì các cặp cạnh tương ứng tỉ lệ: \frac{{AB}}{{DF}} = \frac{{BC}}{{EF}} = \frac{{AC}}{{DE}} = 2\(\frac{{AB}}{{DF}} = \frac{{BC}}{{EF}} = \frac{{AC}}{{DE}} = 2\)

Bài 29 (trang 74, 75 SGK Toán 8 Tập 2)

Cho hai tam giác ABC và A'B'C' có kích thước như trong hình 35.

Hình 35
Hình 35

Hướng dẫn giải:

Ta có:

\begin{array}{l}
\dfrac{{AB}}{{A\(\begin{array}{l} \dfrac{{AB}}{{A'B'}} = \dfrac{6}{4} = \dfrac{3}{2};\,\,\dfrac{{AC}}{{A'C'}} = \dfrac{9}{6} = \dfrac{3}{2};\\\dfrac{{BC}}{{B'C'}} = \dfrac{{12}}{8} = \dfrac{3}{2}\\ \Rightarrow \dfrac{{AB}}{{A'B'}} = \dfrac{{AC}}{{A'C'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{3}{2} \end{array}\)

\Rightarrow \Delta ABC \text{ đồng dạng }\Delta A\(\Rightarrow \Delta ABC \text{ đồng dạng }\Delta A'B'C'\left( c-c-c \right)\)

b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\dfrac{{AB}}{{A\(\dfrac{{AB}}{{A'B'}} = \dfrac{{AC}}{{A'C'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{AB + AC + BC}}{{A'B' + A'C' + B'C'}} = \dfrac{{{C_{ABC}}}}{{{C_{A'B'C'}}}} = \dfrac{3}{2}\)

(với C_{ABC}\(C_{ABC}\)C_{A\(C_{A'B'C'}\) lần lượt là chu vi của hai tam giác ABC, A'B'C')

Vậy tỉ số chu vi của tam giác ABC và chu vi của tam giác A’B’C’ là \dfrac{3}{2}\(\dfrac{3}{2}\)

Bài 30 (trang 75 SGK Toán 8 Tập 2)

Tam giác ABC có độ dài các cạnh là AB = 3cm, AC = 5cm, BC = 7cm. Tam giác A'B'C' đồng dạng với tam giác A'B'C' và có chu vi bằng 55cm.

Hãy tính độ dài của các cạnh tam giác A'B'C' (làm tròn đến chữ số thập phân thứ hai).

Hướng dẫn giải:

Bài 30

\Rightarrow \Delta ABC\(\Rightarrow \Delta ABC\) đồng dạng \Delta A\(\Delta A'B'C'\left( {gt} \right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\dfrac{{AB}}{{A\(\dfrac{{AB}}{{A'B'}} = \dfrac{{AC}}{{A'C'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{AB + AC + BC}}{{A'B' + A'C' + B'C'}}= \dfrac{{{C_{ABC}}}}{{{C_{A'B'C'}}}}\)

hay \dfrac{3}{A\(\dfrac{3}{A'B'} = \dfrac{7}{B'C'} = \dfrac{5}{A'C'} = \dfrac{C_{ABC}}{55} = \dfrac{3 + 7 + 5}{55} = \dfrac{{15}}{{55}} = \dfrac{3}{11}\)

(với C_{ABC}\(C_{ABC}\)C_{A\(C_{A'B'C'}\) lần lượt là chu vi của hai tam giác ABC, A'B'C')

+ )\,\,\dfrac{3}{{A\(+ )\,\,\dfrac{3}{{A'B'}} = \dfrac{3}{{11}} \Rightarrow A'B' = \dfrac{{3.11}}{3} = 11\,cm\)

+ )\,\,\dfrac{7}{{B\(+ )\,\,\dfrac{7}{{B'C'}} = \dfrac{3}{{11}} \Rightarrow B'C' = \dfrac{{7.11}}{3} \approx 25,67\,cm\)

+ )\,\,\dfrac{5}{{A\(+ )\,\,\dfrac{5}{{A'C'}} = \dfrac{3}{{11}} \Rightarrow A'C' = \dfrac{{5.11}}{3} \approx 18,33\,cm\)

Bài 31 (trang 75 SGK Toán 8 Tập 2)

Cho hai tam giác đồng dạng có tỉ số chu vi là \dfrac{15}{17}\(\dfrac{15}{17}\) và hiệu độ dài hai cạnh tương ứng của chúng là 12,5 cm. Tính hai cạnh đó.

Hướng dẫn giải:

Giả sử ∆A'B'C' đồng dạng ∆ABC và AB-A'B'=12,5 cm.

Vì ∆A'B'C' đồng dạng ∆ABC (giả thiết) nên ta có:

\dfrac{{A\(\dfrac{{A'B'}}{{AB}} = \dfrac{{B'C'}}{{BC}} = \dfrac{{C'A'}}{{CA}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\dfrac{{A\(\dfrac{{A'B'}}{{AB}} = \dfrac{{B'C'}}{{BC}} = \dfrac{{C'A'}}{{CA}} = \dfrac{{A'B' + B'C' + C'A'}}{{AB + BC + CA}} = \dfrac{{{C_{A'B'C'}}}}{{{C_{ABC}}}} = \dfrac{{15}}{{17}}\)

(với C_{ABC}\(C_{ABC}\)C_{A\(C_{A'B'C'}\) lần lượt là chu vi của hai tam giác ABC, A'B'C')

Do đó, \dfrac{{A\(\dfrac{{A'B'}}{{AB}} =\dfrac{{15}}{{17}}\)

\Rightarrow \dfrac{{AB}}{{A\(\Rightarrow \dfrac{{AB}}{{A'B'}} =\dfrac{{17}}{{15}}\)

\eqalign{
& \Rightarrow {{AB} \over {A\(\eqalign{ & \Rightarrow {{AB} \over {A'B'}} - 1 = {{17} \over {15}} - 1 \cr & \Rightarrow {{AB - A'B'} \over {A'B'}} = {{17 - 15} \over {15}} \cr & \Rightarrow {{12,5} \over {A'B'}} = {2 \over {15}} \cr}\)

\Rightarrow A\(\Rightarrow A'B' = \dfrac{{15}}{2}.12,5 = 93,75\,cm\)AB - A\(AB - A'B' = 12,5\,cm\)

\Rightarrow AB = 12,5 + 93,75 = 106,25\,\,cm\(\Rightarrow AB = 12,5 + 93,75 = 106,25\,\,cm\)

........................

Giải Toán 8 bài 5: Trường hợp đồng dạng thứ nhất được VnDoc chia sẻ trên đây. Hy vọng với tài liệu này sẽ giúp ích cho các em có thêm tài liệu tham khảo, đưa ra các phương pháp định hướng giải bài và làm bài tập cụ thể, thông qua giải bài tập các em nắm chắc kiến thức môn Toán lớp 8.

Ngoài tài liệu trên, mời các bạn tham khảo thêm Chuyên đề Toán học 8, Giải bài tập Toán lớp 8, Giải VBT Toán lớp 8 mà VnDoc tổng hợp và giới thiệu tới các bạn đọc.

Chia sẻ, đánh giá bài viết
9
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Toán 8 Cánh diều

Xem thêm