Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải SBT Toán 8 bài 3, 4, 5: Những hằng đẳng thức đáng nhớ

Giải SBT Toán 8 bài 3, 4, 5: Những hằng đẳng thức đáng nhớ tổng hợp câu hỏi và đáp án cho các câu hỏi trong sách bài tập Toán 8 tập 1. Tài liệu giúp các em luyện giải Toán 8, từ đó học tốt môn Toán hơn. Sau đây mời các bạn tham khảo chi tiết.

Bài 11 trang 7 SBT Toán 8 Tập 1

Tính:

a, (x + 2y)2

b, (x – 3y)(x + 3y)

c, (5 – x)2

Hướng dẫn giải:

a, (x + 2y)2 = x2 + 4xy + 4y2

b, (x – 3y)(x + 3y) = x2 – (3y)2 = x2 – 9y2

c, (5 – x)2 = 52 – 10x + x2 = 25 – 10x + x2

Bài 12 trang 7 SBT Toán 8 Tập 1:

Tính:

a, (x – 1)2

b, (3 – y)2

c, (x - 1/2)2

Hướng dẫn giải:

a, (x – 1)2 = x2 –2x + 1

b, (3 – y)2 = 9 – 6y + y2

c, (x - 1/2)2 = x2 – x + 1/4

Bài 13 trang 7 SBT Toán 8 Tập 1:

Viết các biểu thức sau dưới dạng bình phương một tổng:

a, x2 + 6x + 9

b, x2 + x + 1/4

c,2xy2 + x2y4 + 1

Hướng dẫn giải:

a, x2 + 6x + 9 = x2 + 2.x.3 + 32 = (x + 3)2

b, x2 + x + 1/4 = x2 + 2.x.1/2 + (1/2 )2 = (x + 1/2)2

c, 2xy2 + x2y4 + 1 = (xy2)2 + 2.xy2.1 + 12 = (xy2 + 1)2

Bài 14 trang 7 SBT Toán 8 Tập 1:

Rút gọn biểu thức:

a, (x + y)2 + (x – y)2

b, 2(x – y)(x + y) + (x + y)2 + (x – y)2

c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)

Hướng dẫn giải:

a, (x + y)2 + (x – y)2

= x2 + 2xy + y2 + x2 – 2xy + y2

= 2x2 + 2y2

b, 2(x – y)(x + y) + (x + y)2 + (x – y)2

= [(x + y) + (x – y)]2 = (2x)2 = 4x2

c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)

= (x – y + z)2 + 2(x – y + z)(y – z) + (y – z)2

= [(x – y + z) + (y – z)]2 = x2

Bài 15 trang 7 SBT Toán 8 Tập 1:

Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1.

Hướng dẫn giải:

Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)

Ta có: a2 = (5k + 4)2

= 25k2 + 40k + 16

= 25k2 + 40k + 15 + 1

= 5(5k2 + 8k +3) +1

Ta có: 5(5k2 + 8k + 3) ⋮ 5

Vậy a2 = (5k + 4)2 chia cho 5 dư 1.

Bài 16 trang 7 SBT Toán 8 Tập 1:

Tính giá trị của biểu thức sau:

a, x2 – y2 tại x = 87 và y = 13

b, x3 – 3x2 + 3x – 1 tại x = 101

c, x3 + 9x2+ 27x + 27 tại x = 97

Hướng dẫn giải:

a, Ta có: x2 – y2 = (x + y)(x – y)

b, Thay x = 87, y = 13, ta được:

x2 – y2 = (x + y)(x – y)

= (87 + 13)(87 – 13)

= 100.74 = 7400

c, Ta có: x3 + 9x2 + 27x + 27

= x3 + 3.x2.3 + 3.x.32 + 33

= (x + 3)3

Thay x = 97, ta được: (x + 3)3 = (97 + 3)3 = 1003 = 1000000

Bài 17 trang 7 SBT Toán 8 Tập 1:

Chứng minh rằng:

a, (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = 2a3

b, (a + b)[(a – b)2 + ab] = (a + b)[a2 – 2ab + b2 + ab] = a3 + b3

c, (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad – bc)2

Hướng dẫn giải:

a, Ta có: (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = a3 + b3 + a3 – b3 = 2a3

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b, Ta có: (a + b)[(a – b)2 + ab] = (a + b)[a2 – 2ab + b2 + ab]

= (a + b)(a2 – 2ab + b2) = a3 + b3

Vế phải bằng vế trái nên đẳng thức được chứng minh.

c, Ta có: (ac + bd)2 + (ad – bc)2

= a2c2 + 2abcd + b2d2 + a2d2 – 2abcd + b2c2

= a2c2 + b2d2 + a2d2 + b2c2 = c2(a2 + b2) + d2(a2 + b2)

= (a2 + b2)(c2 + d2)

Vế phải bằng vế trái nên đẳng thức được chứng minh.

Bài 18 trang 7 SBT Toán 8 Tập 1:

Chứng tỏ rằng:

a, x2 – 6x + 10 > 0 với mọi x

b, 4x – x2 – 5 < 0 với mọi x

Hướng dẫn giải:

a, Ta có: x2 – 6x + 10 = x2 – 2.x.3 + 9 + 1 = (x – 3)2 + 1

Vì (x – 3)2 ≥ 0 với mọi x nên (x – 3)2 + 1 > 0 mọi x

Vậy x2 – 6x + 10 > 0 với mọi x.

b, Ta có: 4x – x2 – 5 = -(x2 – 4x + 4) – 1 = -(x – 2)2 -1

Vì (x – 2)2 ≥ 0 với mọi x nên –(x – 2)2 ≤ 0 với mọi x.

Suy ra: -(x – 2)2 -1 ≤ 0 với mọi x

Vậy 4x – x2 – 5 < 0 với mọi x.

Bài 19 trang 7 SBT Toán 8 Tập 1:

Tìm giá trị nhỏ nhất của các đa thức:

a, P = x2 – 2x + 5

b, Q = 2x2 – 6x

c, M = x2 + y2 – x + 6y + 10

Hướng dẫn giải:

a, Ta có: P = x2 – 2x + 5 = x2 – 2x + 1 + 4 = (x – 1)2 + 4

Vì (x – 1)2 ≥ 0 nên (x – 1)2 + 4 ≥ 4

Suy ra: P = 4 là giá trị bé nhất ⇒ (x – 1)2 = 0 ⇒ x = 1

Vậy P = 4 là giá trị bé nhất của đa thức khi x = 1.

b, Ta có: Q = 2x2 – 6x = 2(x2 – 3x) = 2(x2 – 2.3/2 x + 9/4 - 9/4 )

= 2[(x - 2/3 ) - 9/4 ] = 2(x - 2/3 )2 - 9/2

Vì (x - 2/3 )2 ≥ 0 nên 2(x - 2/3 )2 ≥ 0 ⇒ 2(x - 2/3 )2 - 9/2 ≥ - 9/2

Suy ra: Q = - 9/2 là giá trị nhỏ nhất ⇒ (x - 2/3 )2 = 0 ⇒ x = 2/3

Vậy Q = - 9/2 là giá trị nhỏ nhất của đa thức khi x = 2/3 .

c, Ta có: M = x2 + y2 – x + 6y + 10 = (y2 + 6y + 9) + (x2 – x + 1)

= (y + 3)2 + (x2 – 2.1/2 x + 1/4 + 3/4) = (y + 3)2 + (x - 1/2)2 + 3/4

Vì (y + 3)2 ≥ 0 và (x - 1/2)2 ≥ 0 nên (y + 3)2 + (x - 1/2)2 ≥ 0

⇒ (y + 3)2 + (x - 12)2 + 3/4 ≥ 3/4

⇒ M = 3/4 là giá trị nhỏ nhất khi (y + 3)2 =0

⇒ y = -3 và (x - 1/2)2 = 0 ⇒ x = 1/2

Vậy M = 3/4 là giá trị nhỏ nhất tại y = -3 và x = 1/2

Bài 20 trang 7 SBT Toán 8 Tập 1:

Tìm giá trị lớn nhất của đa thức:

a, A = 4x – x2 + 3

b, B = x – x2

c, N = 2x – 2x2 – 5

Hướng dẫn giải:

a, Ta có: A = 4x – x2 + 3

= 7 – x2 + 4x – 4

= 7 – (x2 – 4x + 4)

= 7 – (x – 2)2

Vì (x – 2)2 ≥ 0 nên A = 7 – (x – 2)2 ≤ 7

Vậy giá trị của A lớn nhất là 7 tại x = 2

b, Ta có: B = x – x2

= 1/4 - x2 + x - 1/4

= 1/4 - (x2 – 2.x. 1/2 + 1/4)

= 1/4 - (x - 1/2)2

Vì (x - 1/2)2 ≥ 0 nên B = 1/4 - (x - 1/2)2 ≤ 1/4

Vậy giá trị lớn nhất của B là 1/4 tại x = 1/2 .

c, Ta có: N = 2x – 2x2 – 5

= - 2(x2 – x + 5/2)

= - 2(x2 – 2.x. 1/2 + 1/4 + 9/4)

= - 2[(x - 1/2)2 + 9/4 ]

= - 2(x - 1/2)2 - 9/2

Vì (x - 1/2 )2 ≥ 0 nên - 2(x - 1/2)2 ≤ 0

Suy ra: N = - 2(x - 1/2)2 - 9/2 ≤ - 9/2

Vậy giá trị lớn nhất của biểu thức N là - 9/2 tại x = 1/2 .

..........................

Trên đây, VnDoc đã gửi tới các bạn Giải SBT Toán 8 bài 3, 4, 5: Những hằng đẳng thức đáng nhớ. Hy vọng tài liệu sẽ giúp các em trả lời hết các câu hỏi trong phần bài tập SBT môn Toán 8. Để tham khảo lời giải những bài tiếp theo, mời các bạn vào chuyên mục Giải sách bài tập Toán lớp 8 trên VnDoc nhé. Chuyên mục tổng hợp lời giải SBT Toán lớp 8 theo từng đơn vị bài học giúp các em nắm vững kiến thức được học trong từng bài, từ đó học tốt Toán 8 hơn.

Ngoài tài liệu trên, mời các em tham khảo thêm các môn Toán 8, Văn 8, Anh 8, Hóa 8,... hoặc đề thi học học kì 1 lớp 8, đề thi học học kì 2 lớp 8 mà chúng tôi đã sưu tầm và chọn lọc. Với Tài liệu học tập lớp 8 này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn học tốt.

Chia sẻ, đánh giá bài viết
52
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Giải SBT Toán 8

    Xem thêm