Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Giải SBT Toán 12 bài 1: Lũy thừa

Lớp: Lớp 12
Môn: Toán
Dạng tài liệu: Giải bài tập
Loại File: PDF + Word
Phân loại: Tài liệu Tính phí

Toán 12 - Lũy thừa

VnDoc xin giới thiệu tới các bạn học sinh tài liệu Giải SBT Toán 12 bài 1: Lũy thừa, với nội dung được cập nhật chi tiết và chính xác sẽ là nguồn thông tin hay để giúp các bạn học sính đạt kết quả cao hơn trong học tập.

Giải SBT Toán 12 bài 1

Bài 2.1 trang 95 Sách bài tập (SBT) Giải tích 12

Tính:

a) {2^{2 - 3\sqrt 5 }}{.8^{\sqrt 5 }}\({2^{2 - 3\sqrt 5 }}{.8^{\sqrt 5 }}\)

b) {3^{1 + 2\root 3 \of 2 }}:{9^{\root 3 \of 2 }}\({3^{1 + 2\root 3 \of 2 }}:{9^{\root 3 \of 2 }}\)

c) {{{{10}^{2 + \sqrt 7 }}} \over {{2^{2 + \sqrt 7 }}{{.5}^{1 + \sqrt 7 }}}}\({{{{10}^{2 + \sqrt 7 }}} \over {{2^{2 + \sqrt 7 }}{{.5}^{1 + \sqrt 7 }}}}\)

d) ({4^{2\sqrt 3 }} - {4^{\sqrt 3 - 1}}){.2^{ - 2\sqrt 3 }}\(({4^{2\sqrt 3 }} - {4^{\sqrt 3 - 1}}){.2^{ - 2\sqrt 3 }}\)

Hướng dẫn làm bài:

a) 4

b) 3

c) 5

d) {2^{2\sqrt 3 }} - {1 \over 4}\({2^{2\sqrt 3 }} - {1 \over 4}\)

Bài 2.2 trang 95 Sách bài tập (SBT) Giải tích 12

Tính:

a) {({1 \over {16}})^{ - {3 \over 4}}} + {810000^{0,25}} - {(7{{19} \over {32}})^{{1 \over 5}}}\({({1 \over {16}})^{ - {3 \over 4}}} + {810000^{0,25}} - {(7{{19} \over {32}})^{{1 \over 5}}}\)

b) {(0,001)^{ - {1 \over 3}}} - {2^{ - 2}}{.64^{{2 \over 3}}} - {8^{ - 1{1 \over 3}}}\({(0,001)^{ - {1 \over 3}}} - {2^{ - 2}}{.64^{{2 \over 3}}} - {8^{ - 1{1 \over 3}}}\)

c) {27^{{2 \over 3}}} - {( - 2)^{ - 2}} + {(3{3 \over 8})^{ - {1 \over 3}}}\({27^{{2 \over 3}}} - {( - 2)^{ - 2}} + {(3{3 \over 8})^{ - {1 \over 3}}}\)

d) {( - 0,5)^{ - 4}} - {625^{0,25}} - {(2{1 \over 4})^{ - 1{1 \over 2}}}\({( - 0,5)^{ - 4}} - {625^{0,25}} - {(2{1 \over 4})^{ - 1{1 \over 2}}}\)

Hướng dẫn làm bài:

a) 36,5 = {{73} \over 2}\(36,5 = {{73} \over 2}\)

b) {(0,001)^{ - {1 \over 3}}} - {2^{ - 2}}{.64^{{2 \over 3}}} - {8^{ - 1{1 \over 3}}}\({(0,001)^{ - {1 \over 3}}} - {2^{ - 2}}{.64^{{2 \over 3}}} - {8^{ - 1{1 \over 3}}}\)

c) {{113} \over {12}}\({{113} \over {12}}\)

d) {{289} \over {27}}\({{289} \over {27}}\)

Bài 2.3 trang 95 Sách bài tập (SBT) Giải tích 12

Cho a và b là các số dương. Đơn giản các biểu thức sau:

a) {{{a^{{4 \over 3}}}({a^{ - {1 \over 3}}} + {a^{{2 \over 3}}})} \over {{a^{{1 \over 4}}}({a^{{3 \over 4}}} + {a^{ - {1 \over 4}}})}}\({{{a^{{4 \over 3}}}({a^{ - {1 \over 3}}} + {a^{{2 \over 3}}})} \over {{a^{{1 \over 4}}}({a^{{3 \over 4}}} + {a^{ - {1 \over 4}}})}}\)

b) {{{a^{{1 \over 3}}}\sqrt b + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a + \root 6 \of b }}\({{{a^{{1 \over 3}}}\sqrt b + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a + \root 6 \of b }}\)

c) (\root 3 \of a + \root 3 \of b )({a^{{2 \over 3}}} + {b^{{2 \over 3}}} - \root 3 \of {ab} )\((\root 3 \of a + \root 3 \of b )({a^{{2 \over 3}}} + {b^{{2 \over 3}}} - \root 3 \of {ab} )\)

d) ({a^{{1 \over 3}}} + {b^{{1 \over 3}}}):(2 + \root 3 \of {{a \over b}} + \root 3 \of {{b \over a}} )\(({a^{{1 \over 3}}} + {b^{{1 \over 3}}}):(2 + \root 3 \of {{a \over b}} + \root 3 \of {{b \over a}} )\)

Hướng dẫn làm bài:

Với a và b là các số dương ta có:

a) {{{a^{{4 \over 3}}}({a^{ - {1 \over 3}}} + {a^{{2 \over 3}}})} \over {{a^{{1 \over 4}}}({a^{{3 \over 4}}} + {a^{ - {1 \over 4}}})}} = {{a + {a^2}} \over {a + 1}} = {{a(a + 1)} \over {a + 1}} = a\({{{a^{{4 \over 3}}}({a^{ - {1 \over 3}}} + {a^{{2 \over 3}}})} \over {{a^{{1 \over 4}}}({a^{{3 \over 4}}} + {a^{ - {1 \over 4}}})}} = {{a + {a^2}} \over {a + 1}} = {{a(a + 1)} \over {a + 1}} = a\)

b) {{{a^{{1 \over 3}}}\sqrt b + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a + \root 6 \of b }} = {{{a^{{1 \over 3}}}{b^{{1 \over 2}}} + {b^{{1 \over 3}}}{a^{{1 \over 2}}}} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}}\({{{a^{{1 \over 3}}}\sqrt b + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a + \root 6 \of b }} = {{{a^{{1 \over 3}}}{b^{{1 \over 2}}} + {b^{{1 \over 3}}}{a^{{1 \over 2}}}} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}}\)

= {{{a^{{1 \over 3}}}{b^{{1 \over 3}}}({b^{{1 \over 2} - {1 \over 3}}} + {a^{{1 \over 2} - {1 \over 3}}})} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}} = {{{a^{{1 \over 3}}}{b^{{1 \over 3}}}({b^{{1 \over 6}}} + {a^{{1 \over 6}}})} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}} = \root 3 \of {ab}\(= {{{a^{{1 \over 3}}}{b^{{1 \over 3}}}({b^{{1 \over 2} - {1 \over 3}}} + {a^{{1 \over 2} - {1 \over 3}}})} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}} = {{{a^{{1 \over 3}}}{b^{{1 \over 3}}}({b^{{1 \over 6}}} + {a^{{1 \over 6}}})} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}} = \root 3 \of {ab}\)

c) (\root 3 \of a + \root 3 \of b )({a^{{2 \over 3}}} + {b^{{2 \over 3}}} - \root 3 \of {ab} )\((\root 3 \of a + \root 3 \of b )({a^{{2 \over 3}}} + {b^{{2 \over 3}}} - \root 3 \of {ab} )\)

= ({a^{{1 \over 3}}} + {b^{{1 \over 3}}})({a^{{2 \over 3}}} - {a^{{1 \over 3}}}{b^{{1 \over 3}}} + {b^{{2 \over 3}}})\(= ({a^{{1 \over 3}}} + {b^{{1 \over 3}}})({a^{{2 \over 3}}} - {a^{{1 \over 3}}}{b^{{1 \over 3}}} + {b^{{2 \over 3}}})\)

= {({a^{{1 \over 3}}})^3} + {({b^{{1 \over 3}}})^3} = a + b\(= {({a^{{1 \over 3}}})^3} + {({b^{{1 \over 3}}})^3} = a + b\)

d) ({a^{{1 \over 3}}} + {b^{{1 \over 3}}}):(2 + \root 3 \of {{a \over b}} + \root 3 \of {{b \over a}} )\(({a^{{1 \over 3}}} + {b^{{1 \over 3}}}):(2 + \root 3 \of {{a \over b}} + \root 3 \of {{b \over a}} )\)

= {{{a^{{1 \over 3}}} + {b^{{1 \over 3}}}} \over {{{2\root 3 \of {ab} + \root 3 \of {{a^2}} + \root 3 \of {{b^2}} } \over {\root 3 \of {ab} }}}} = {{(\root 3 \of a + \root 3 \of b )\root 3 \of {ab} } \over {{{(\root 3 \of a + \root 3 \of b )}^2}}} = {{\root 3 \of {ab} } \over {\root 3 \of a + \root 3 \of b }}\(= {{{a^{{1 \over 3}}} + {b^{{1 \over 3}}}} \over {{{2\root 3 \of {ab} + \root 3 \of {{a^2}} + \root 3 \of {{b^2}} } \over {\root 3 \of {ab} }}}} = {{(\root 3 \of a + \root 3 \of b )\root 3 \of {ab} } \over {{{(\root 3 \of a + \root 3 \of b )}^2}}} = {{\root 3 \of {ab} } \over {\root 3 \of a + \root 3 \of b }}\)

Bài 2.4 trang 96 Sách bài tập (SBT) Giải tích 12

Hãy so sánh mỗi số sau với 1.

a) {2^{ - 2}}\({2^{ - 2}}\)

b) {(0,013)^{ - 1}}\({(0,013)^{ - 1}}\)

c) {({2 \over 7})^5}\({({2 \over 7})^5}\)

d) {({1 \over 2})^{\sqrt 3 }}\({({1 \over 2})^{\sqrt 3 }}\)

e) {({\pi \over 4})^{\sqrt 5 - 2}}\({({\pi \over 4})^{\sqrt 5 - 2}}\)

g) {({1 \over 3})^{\sqrt 8 - 3}}\({({1 \over 3})^{\sqrt 8 - 3}}\)

Hướng dẫn làm bài:

a) {2^{ - 2}} = {1 \over {{2^2}}} < 1\({2^{ - 2}} = {1 \over {{2^2}}} < 1\)

b) {(0,013)^{ - 1}} = {1 \over {0,013}} > 1\({(0,013)^{ - 1}} = {1 \over {0,013}} > 1\){({2 \over 7})^5} < 1\({({2 \over 7})^5} < 1\)

c) Tương tự,

d) {({1 \over 2})^{\sqrt 3 }} < 1\({({1 \over 2})^{\sqrt 3 }} < 1\)

e) {({\pi \over 4})^{\sqrt 5 - 2}} < 1\({({\pi \over 4})^{\sqrt 5 - 2}} < 1\)

g) {({1 \over 3})^{\sqrt 8 - 3}} > 1\({({1 \over 3})^{\sqrt 8 - 3}} > 1\)

Bài 2.5 trang 96 Sách bài tập (SBT) Giải tích 12

Hãy so sánh các cặp số sau:

a) \sqrt{17}\(\sqrt{17}\)\sqrt[3]{28}\(\sqrt[3]{28}\)

b) \sqrt[4]{13}\(\sqrt[4]{13}\)\sqrt[5]{23}\(\sqrt[5]{23}\)

c) \left(\frac{1}{3}\right)^{\sqrt{3}}\(\left(\frac{1}{3}\right)^{\sqrt{3}}\)\left(\frac{1}{3}\right)^{\sqrt{2}}\(\left(\frac{1}{3}\right)^{\sqrt{2}}\)

d) 4^{\sqrt{5}}\(4^{\sqrt{5}}\)4^{\sqrt{7}}\(4^{\sqrt{7}}\)

Hướng dẫn làm bài:

a) \sqrt {17} = \root 6 \of {{{17}^3}} = \root 6 \of {4913} ;\root 3 \of {28} = \root 6 \of {{{28}^2}} = \root 6 \of {784}\(\sqrt {17} = \root 6 \of {{{17}^3}} = \root 6 \of {4913} ;\root 3 \of {28} = \root 6 \of {{{28}^2}} = \root 6 \of {784}\)

Vậy \sqrt {17}  > \root 3 \of {28}\(\sqrt {17} > \root 3 \of {28}\)

b) \root 4 \of {13} = \root {20} \of {{{13}^5}} = \root {20} \of {371293} ;\root 5 \of {23} = \root {20} \of {{{23}^4}} = \root {20} \of {279841}\(\root 4 \of {13} = \root {20} \of {{{13}^5}} = \root {20} \of {371293} ;\root 5 \of {23} = \root {20} \of {{{23}^4}} = \root {20} \of {279841}\)

Ta có 371293 > 279841 nên \root 4 \of {13}  > \root 5 \of {23}\(\root 4 \of {13} > \root 5 \of {23}\)

c) \sqrt 3 > \sqrt 2\(\sqrt 3 > \sqrt 2\){1 \over 3} < 1\({1 \over 3} < 1\) nên {({1 \over 3})^{\sqrt 3 }} < {({1 \over 3})^{\sqrt 2 }}\({({1 \over 3})^{\sqrt 3 }} < {({1 \over 3})^{\sqrt 2 }}\)

d) \sqrt 5 < \sqrt 7\(\sqrt 5 < \sqrt 7\)4 > 1\(4 > 1\) nên {4^{\sqrt 5 }} < {4^{\sqrt 7 }}\({4^{\sqrt 5 }} < {4^{\sqrt 7 }}\)

---------------------------------

Trên đây VnDoc.com đã giới thiệu tới bạn đọc tài liệu: Giải SBT Toán 12 bài 1: Lũy thừa. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Giải bài tập Toán lớp 12, Giải bài tập Hóa học lớp 12, Giải bài tập Vật Lí 12VnDoc tổng hợp và đăng tải.

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Giải Vở BT Toán 12

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm