Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 9 Cánh diều Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn

Giải Toán 9 Cánh diều Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Cánh diều tập 1 trang 88, 89, 90, 91.

Giải Toán 9 trang 88

Khởi động trang 88 Toán 9 Tập 1 Cánh diều

Hình 28 minh họa một máy bay cất cánh từ vị trí A trên đường băng của sân bay và bay theo đường thẳng AB tạo với phương nằm ngang AC một góc là 20°. Sau 5 giây, máy bay ở độ cao BC = 110 m.

Khởi động trang 88 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Có thể tính khoảng cách AB bằng cách nào?

Hướng dẫn giải:

Ta có thể tính khoảng cách AB dựa vào độ cao BC và góc tạo bởi đường bay với phương nằm ngang.

Xét ∆ABC vuông tại C, ta có BC = AB.sinA, suy ra AB = \frac{BC}{sinA}\(\frac{BC}{sinA}\)

Giải Toán 9 trang 89

Luyện tập 1 trang 89 Toán 9 Tập 1 Cánh diều

Hãy giải bài toán ở phần mở đầu và tính AB trong Hình 29b (làm tròn kết quả đến hàng phần trăm của mét).

Luyện tập 1 trang 89 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Hướng dẫn giải:

⦁ Bài toán ở phần mở đầu:

Xét ∆ABC vuông tại C, ta có:

BC = AB.sinA, suy ra AB = \frac{BC}{sinA} = \frac{110}{sin 20°}  ≈
 321,62 (m)\(\frac{BC}{sinA} = \frac{110}{sin 20°} ≈ 321,62 (m)\)

⦁ Hình 29b:

Xét ∆ABC vuông tại C, ta có:

AC = AB.cosA, suy ra AB = \frac{AC}{CosA} = \frac{4}{cos 81°}  ≈
 25,57 (m).\(\frac{AC}{CosA} = \frac{4}{cos 81°} ≈ 25,57 (m).\)

Giải Toán 9 trang 90

Luyện tập 2 trang 90 Toán 9 Tập 1 Cánh diều

Mặt cắt đứng của khung thép có dạng tam giác cân ABC với góc B = 23°, AB = 4 m (Hình 33). Tính độ dài đoạn thẳng BC (làm tròn kết quả đến hàng phần mười của mét).

Luyện tập 2 trang 90 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Hướng dẫn giải:

Luyện tập 2 trang 90 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Kẻ AH ⊥ BC.

Vì ∆ABC cân tại A nên đường cao AH đồng thời là đường trung tuyến, do đó H là trung điểm của BC, nên BC = 2BH.

Xét ∆ABH vuông tại H, ta có: BH = AB.cosB = 4.cos23° ≈ 3,7 (m).

Do đó BC = 2BH ≈ 2.3,7 = 7,4 (m).

Vậy BC ≈ 7,4 m.

Bài 1 trang 90 Toán 9 Tập 1 Cánh diều

Hình 35 mô tả ba vị trí A, B, C là ba đỉnh của một tam giác vuông và không đo được trực tiếp các khoảng cách từ C đến A và từ C đến B. Biết AB = 50 m, \widehat {ABC}\(\widehat {ABC}\)=40°. Tính các khoảng cách CA và BC (làm tròn kết quả đến hàng đơn vị của mét).

Bài 1 trang 90 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Giải Toán 9 trang 91

Bài 2 trang 91 Toán 9 Tập 1 Cánh diều

Để ước lượng chiều cao của một cây trong sân trường, bạn Hoàng đứng ở sân trường (theo phương thẳng đứng), mắt bạn Hoàng đặt tại vị trí C cách mặt đất một khoảng CB = DH = 1,64 m và cách cây một khoảng CD = BH = 6 m. Tính chiều cao AH của cây (làm tròn kết quả đến hàng phần trăm của mét), biết góc nhìn ACD bằng 38° minh hoạ ở Hình 36.

Bài 2 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Hướng dẫn giải:

Xét ∆ACD vuông tại D, ta có:

AD = CD.tan ACD= 6.tan38o ≈ 4,69 (m).

Ta có AG = AD + DH ≈ 4,69 + 1,64 = 6,33 (m).

Vậy chiều cao AH của cây khoảng 6,33 m.

Bài 3 trang 91 Toán 9 Tập 1 Cánh diều

Người ta cần ước lượng khoảng cách từ vị trí O đến khu đất có dạng hình thang MNPQ nhưng không thể đo được trực tiếp, khoảng cách đó được tính bằng khoảng cách từ O đến đường thẳng MN. Người ta chọn vị trí A ở đáy MN và đo được OA = 18 m, \widehat {OAN}\(\widehat {OAN}\)=44° (Hình 37). Tính khoảng cách từ vị trí O đến khu đất (làm tròn kết quả đến hàng phần mười của mét).

Bài 3 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Hướng dẫn giải:

Bài 3 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Gọi H là chân đường vuông góc kẻ từ O đến MN.

Xét ∆OAH vuông tại H, ta có: OH = OA.sinA = 18.sin44° ≈ 12,5 (m).

Vậy khoảng cách từ vị trí O đến khu đất khoảng 12,5 m.

Bài 4 trang 91 Toán 9 Tập 1 Cánh diều

Một mảnh gỗ có dạng hình chữ nhật ABCD với đường chéo AC = 8 dm. Do bảo quản không tốt nên mảnh gỗ bị hỏng phía hai đỉnh B và D. Biết \widehat {BAC}\(\widehat {BAC}\)=64° (Hình 38). Người ta cần biết độ dài AB và AD để khôi phục lại mảnh gỗ ban đầu. Độ dài AB, AD bằng bao nhiêu decimét (làm tròn kết quả đến hàng phần mười)?

Bài 4 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Hướng dẫn giải:

Xét ∆ABC vuông tại B, ta có:

AB = AC.cos\widehat {BAC}\(\widehat {BAC}\)= 8.cos64o ≈ 3,5 (dm).

BC = AC.sin \widehat {BAC}\(\widehat {BAC}\)= 8.sin64o ≈ 7,2 (dm).

Do ABCD là hình chữ nhật nên AD = BC ≈ 7,2 dm.

Vậy AB ≈ 3,5 dm và AD ≈ 7,2 dm.

Bài 5 trang 91 Toán 9 Tập 1 Cánh diều

Trên mặt biển, khi khoảng cách AB từ ca nô đến chân tháp hải đăng là 250 m, một người đứng trên tháp hải đăng đó, đặt mắt tại vị trí C và nhìn về phía ca nô theo phương CA tạo với phương nằm ngang Cx một góc là \widehat {ACx}\(\widehat {ACx}\)=32° ( Hình 39 ). Tính chiều cao của tháp hải đăng (làm tròn kết quả đến hàng phần mười của mét), biết AB // Cx và độ cao từ tầm mắt của người đó đến đỉnh tháp hải đăng là 3,2 m.

Bài 5 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Chia sẻ, đánh giá bài viết
1
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 9 Cánh diều

    Xem thêm