Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 9 trang 56 tập 1 Cánh diều

Giải Toán 9 trang 56 Tập 1 Cánh diều hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Cánh diều tập 1 trang 56.

Hoạt động 2 trang 56 Toán 9 Tập 1 Cánh diều

So sánh: \sqrt {{4\cdot 25 }}\(\sqrt {{4\cdot 25 }}\)\sqrt{4}.\sqrt{25}\(\sqrt{4}.\sqrt{25}\)

Hướng dẫn giải

Ta có: \sqrt{4\ .\ 25}=\sqrt{100}=\sqrt{10^2}=10\(\sqrt{4\ .\ 25}=\sqrt{100}=\sqrt{10^2}=10\)

\sqrt{4}\ .\ \sqrt{25} = 2 \ . 5 = 10\(\sqrt{4}\ .\ \sqrt{25} = 2 \ . 5 = 10\)

Vậy \sqrt{4\ .\ 25}=\sqrt{4}\ .\ \sqrt{25}\(\sqrt{4\ .\ 25}=\sqrt{4}\ .\ \sqrt{25}\)

Luyện tập 2 trang 56 Toán 9 Tập 1 Cánh diều

Áp dụng quy tắc về căn bậc hai của một tích, hãy tính:

a) \sqrt{25\ .\ 121}\(\sqrt{25\ .\ 121}\)

b) \sqrt{2}\ .\ \sqrt{\frac{9}{8}}\(\sqrt{2}\ .\ \sqrt{\frac{9}{8}}\)

c) \sqrt{10}.\ \sqrt{5,2}\ .\ \sqrt{52}\(\sqrt{10}.\ \sqrt{5,2}\ .\ \sqrt{52}\)

Hướng dẫn giải

a) \sqrt{25\ .\ 121} =\sqrt{25\  } \ . \sqrt{ \ 121}\(\sqrt{25\ .\ 121} =\sqrt{25\ } \ . \sqrt{ \ 121}\) = 5 . 11 = 55

b) \sqrt{2}\ .\ \sqrt{\frac{9}{8}} =\sqrt{2 \ .\   \frac{9}{8}}=\sqrt{  \frac{9}{4}}= \frac{3}{2}\(\sqrt{2}\ .\ \sqrt{\frac{9}{8}} =\sqrt{2 \ .\ \frac{9}{8}}=\sqrt{ \frac{9}{4}}= \frac{3}{2}\)

c) \sqrt{10}. \sqrt{5,2}\ .\ \sqrt{52} = \sqrt{10 .  5,2 .   52}=\sqrt{ 5 2 \ .\   52}\(\sqrt{10}. \sqrt{5,2}\ .\ \sqrt{52} = \sqrt{10 . 5,2 . 52}=\sqrt{ 5 2 \ .\ 52}\) = 52

-----------------------------------------------

---> Xem thêm: Giải Toán 9 trang 57 tập 1 Cánh diều

Lời giải Toán 9 trang 56 Tập 1 Cánh diều với các câu hỏi nằm trong Bài 2: Một số phép tính về căn bậc hai của số thực, được VnDoc biên soạn và đăng tải!

Chia sẻ, đánh giá bài viết
1
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 9 Cánh diều

    Xem thêm