Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 9 Kết nối tri thức Bài 18: Hàm số y = ax^2 (a khác 0)

Bài 18: Hàm số y = ax2 (a khác 0)

Giải Toán 9 Kết nối tri thức Bài 18: Hàm số y = ax2 (a khác 0) hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Kết nối tri thức tập 2 trang 5, 6, 7, 8, giúp các em nắm vững kiến thức và luyện giải môn Toán lớp 9. Mời các bạn tham khảo.

Mở đầu trang 4 Toán 9 Tập 2

Một cây cầu treo có trụ tháp đôi cao 75 m so với mặt của cây cầu và cách nhau 400 m. Các dây cáp có dạng đồ thị của hàm số y = ax2 (a ≠ 0) như Hình 6.1 và được treo trên các đỉnh tháp. Tìm chiều cao CH của dây cáp biết điểm H cách tâm O của cây cầu 100 m (giả sử mặt của cây cầu là bằng phẳng).

Hướng dẫn giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Vì các dây cáp có dạng đồ thị của hàm số y = ax2 (a ≠ 0) được treo trên các đỉnh tháp nên đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm B(200; 75).

Thay x = 200 và y = 75 vào hàm số y = ax2, ta được:

75 = a . 2002, hay 40 000a = 75, suy ra a = 0,001875 (thỏa mãn a ≠ 0).

Khi đó ta có hàm số y = 0,001875x2.

Chiều cao CH của dây cáp chính là tung độ của điểm C thuộc đồ thị hàm số y = 0,001875x2.

Thay hoành độ điểm C là x = 100 vào hàm số y = 0,001875x2, ta được:

y = 0,001875 . 1002 = 18,75.

Vậy chiều cao CH của dây cáp là 18,75 mét.

1. Hàm số y = ax2 (a≠0)

HĐ1 trang 5 Toán 9 Tập 2: Khi thả một vật rơi tự do và bỏ qua sức cản của không khí, quãng đường chuyển động s (mét) của vật được cho bằng công thức s = 4,9t2, trong đó t là thời gian chuyển động của vật (giây).

a) Hoàn thành bảng sau vào vở:

b) Giả sử một vật rơi tự do từ độ cao 19,6 m so với mặt đất. Hỏi sau bao lâu vật chạm đất?

Hướng dẫn giải:

a) Thay t = 0 vào công thức s = 4,9t2, ta được: s = 4,9 . 02 = 0.

Thay t = 1 vào công thức s = 4,9t2, ta được: s = 4,9 . 12 = 4,9.

Thay t = 2 vào công thức s = 4,9t2, ta được: s = 4,9 . 22 = 19,6.

Ta hoàn thành được bảng như sau:

t (giây)

0

1

2

s (m)

0

4,9

19,6

b) Vật rơi tự do từ độ cao 19,6 mét so với mặt đất tức là quãng đường chuyển động của vật là s = 19,6 (m).

Từ bảng kết quả câu a, ta thấy khi t = 2 (giây) thì s = 19,6 (mét).

Vậy nếu một vật rơi tự do từ độ cao 19,6 m so với mặt đất thì sau 2 giây vật sẽ chạm đất.

HĐ2 trang 5 Toán 9 Tập 2 :

a) Viết công thức tính diện tích S của hình tròn bán kính r.

b) Hoàn thành bảng sau vào vở (lấy π = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai):

Hướng dẫn giải:

a) Công thức tính diện tích S của hình tròn bán kính r là:

S = πr2 (đơn vị diện tích).

b) Thay r = 1 và π = 3,14 vào công thức S = πr2, ta được: S = 3,14 . 12 = 3,14.

Thay r = 2 và π = 3,14 vào công thức S = πr2, ta được: S = 3,14 . 22 = 12,56.

Thay r = 3 và π = 3,14 vào công thức S = πr2, ta được: S = 3,14 . 32 = 28,26.

Thay r = 4 và π = 3,14 vào công thức S = πr2, ta được: S = 3,14 . 42 = 50,24.

Ta hoàn thành được bảng như sau:

r (cm)

1

2

3

4

S (cm2)

3,14

12,56

28,26

50,24

2. Đồ thị của hàm số y = ax2 (a≠0)

HĐ3 trang 6 Toán 9 Tập 2 : Cho hàm số y = 2x2.

a) Hoàn thành bảng giá trị sau vào vở:

b) Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; 2x2) với x ∈ ℝ và nối lại, ta được đồ thị của hàm số y = 2x2.

Hướng dẫn giải:

a) Thay lần lượt các giá trị x = –3; x = –2; …; x = 3 vào hàm số y = 2x2, ta được bảng giá trị:

x

–3

–2

–1

0

1

2

3

y = 2x2

18

8

2

0

2

8

18

b) Biểu diễn các điểm (–3; 18); (–2; 8); (–1; 2); (0; 0); (1; 2); (2; 8) và (3; 18) trong bảng giá trị ở câu a và các điểm (x; 2x2) với x ∈ ℝ trên mặt phẳng tọa độ Oxy, sau đó nối lại, ta được đồ thị của hàm số y = 2x2 như sau:

Vận dụng 2 trang 8 Toán 9 Tập 2 : Giải quyết bài toán ở tình huống mở đầu.

Hướng dẫn giải:

Vì các dây cáp có dạng đồ thị của hàm số y = ax2 (a ≠ 0) được treo trên các đỉnh tháp nên đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm B(200; 75).

Thay x = 200 và y = 75 vào hàm số y = ax2, ta được:

75 = a . 2002, hay 40 000a = 75, suy ra a = 0,001875 (thỏa mãn a ≠ 0).

Khi đó ta có hàm số y = 0,001875x2.

Chiều cao CH của dây cáp chính là tung độ của điểm C thuộc đồ thị hàm số y = 0,001875x2.

Thay hoành độ điểm C là x = 100 vào hàm số y = 0,001875x2, ta được:

y = 0,001875 . 1002 = 18,75.

Vậy chiều cao CH của dây cáp là 18,75 mét.

Bài 18.1 trang 8 Toán 9 Tập 2 : Cho hàm số y = 0,25x2. Hoàn thành bảng giá trị sau vào vở:

Bài 6.1 trang 8 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Hướng dẫn giải:

Thay lần lượt các giá trị x = –3; x = –2; …; x = 3 vào hàm số y = 0,25x2, ta được bảng giá trị:

x

–3

–2

–1

0

1

2

3

y

2,25

1

0,25

0

0,25

1

2,25

Bài 18.2 trang 8 Toán 9 Tập 2 : Cho hình lăng trụ đứng có đáy là hình vuông cạnh a (cm) và chiều cao 10 cm.

a) Viết công thức tính thể tích V của lăng trụ theo a và tính giá trị của V khi a = 2 cm.

b) Nếu độ dài cạnh đáy tăng lên hai lần thì thể tích của hình lăng trụ thay đổi thế nào?

Hướng dẫn giải:

a) Thể tích của hình lăng trụ đứng đó là: V = Bh = 10a2 (cm3).

Vậy công thức tính thể tích V của lăng trụ là V = 10a2 (cm3).

Khi a = 2 cm, thay vào công thức V = 10a2, ta được:

V = 10 . 22 = 40 (cm3).

Vậy V = 40 cm3 khi a = 2 cm.

b) Nếu độ dài cạnh đáy tăng lên hai lần thì độ dài cạnh đáy lúc này là 2a (cm).

Thể tích của hình lăng trụ lúc này là:

V’ = B’.h = 10 . (2a)2 = 40a2 = 4V (cm3).

Vậy nếu độ dài cạnh đáy tăng lên hai lần thì thể tích của hình lăng trụ tăng lên 4 lần.

Bài 18.3 trang 8 Toán 9 Tập 2 : Diện tích toàn phần S (cm2) của hình lập phương, tức là tổng diện tích xung quanh và diện tích của hai mặt đáy là một hàm số của độ dài cạnh a (cm).

a) Viết công thức của hàm số này.

b) Sử dụng công thức nhận được ở câu a để tính độ dài cạnh của một hình lập phương có diện tích toàn phần là 54 cm2.

Hướng dẫn giải:

a) Diện tích toàn phần của hình lập phương là:

S = 2 . a2 + 4 . a2 = 6a2 (cm2).

Vậy công thức của hàm số cần tìm là: S = 6a2 (cm2).

b) Ta có S = 54 cm2, thay vào công thức S = 6a2, ta được:

54 = 6a2, hay a2 = 9. Suy ra a = 3 (do a > 0).

Vậy một hình lập phương có diện tích toàn phần là 54 cm2 thì có độ dài cạnh bằng 3 cm.

Bài 18.3 trang 8 Toán 9 Tập 2:

Diện tích toàn phần S\left( {c{m^2}} \right)\(S\left( {c{m^2}} \right)\) của hình lập phương, tức là tổng diện tích xung quanh và diện tích đáy hai mặt của hai mặt đáy là một hàm số của độ dài cạnh a (cm).

a) Viết công thức của hàm số này.

b) Sử dụng công thức nhận được ở câu a để tính độ dài cạnh của một hình lập phương có diện tích toàn phần là 54c{m^2}\(54c{m^2}\).

Hướng dẫn giải:

a) Diện tích toàn phần của hình lập phương cạnh a là: S = 6{a^2}\left( {c{m^2}} \right)\(S = 6{a^2}\left( {c{m^2}} \right)\).

b) Với S = 54c{m^2}\(S = 54c{m^2}\) thay vào công thức S = 6{a^2}\(S = 6{a^2}\) ta có: 54 = 6.{a^2} \Rightarrow {a^2} = 9 \Rightarrow a = 3\(54 = 6.{a^2} \Rightarrow {a^2} = 9 \Rightarrow a = 3\) (do a > 0\(a > 0\))

Vậy với một hình lập phương có diện tích toàn phần là 54c{m^2}\(54c{m^2}\) thì độ dài cạnh là 3cm.

Chú ý khi giải: Độ dài cạnh của hình lập phương luôn lớn hơn 0.

Bài 18.5 trang 8 Toán 9 Tập 2 : Biết rằng đường cong trong Hình 6.6 là một parabol y = ax2.

a) Tìm hệ số a.

b) Tìm tung độ của điểm thuộc parabol có hoành độ x = –2.

c) Tìm các điểm thuộc parabol có tung độ y = 8.

Bài 6.5 trang 8 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Hướng dẫn giải:

a) Do parabol y = ax2 trong Hình 6.6 đi qua điểm có tọa độ (2; 2) nên ta thay x = 2 và y = 2 vào hàm số y = ax2 thì được:

2 = a . 22, hay 4a = 2. Suy ra a = \frac{1}{2}\(\frac{1}{2}\).

b) Trên Hình 6.6, ta thấy parabol đi qua điểm có tọa độ (–2; 2).

Vậy điểm thuộc parabol có hoành độ x = –2 thì có tung độ là 2.

c) Với a = \frac{1}{2}\(\frac{1}{2}\) ta có hàm số y=\frac{1}{2} x^{2}\(y=\frac{1}{2} x^{2}\)

Thay y = 8 vào hàm số trên, ta được: 8=\frac{1}{2} x^{2}\(8=\frac{1}{2} x^{2}\), hay x2 = 16.

Suy ra x = 4 hoặc x = –4.

Vậy các điểm thuộc parabol cần tìm là (–4; 8) và (4; 8).

Bài 18.6 trang 9 Toán 9 Tập 2 : Trong Hình 6.7 có hai đường cong là đồ thị của hai hàm số y = –3x2 và y = x2. Hãy cho biết đường nào là đồ thị của hàm số y = –3x2.

Bài 6.6 trang 9 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Hướng dẫn giải:

Đồ thị hàm số y = ax2 (a ≠ 0) là đường cong parabol nằm phía trên trục hoành nếu a > 0 và nằm phía dưới trục hoành nếu a < 0.

Quan sát Hình 6,7, ta thấy đường cong màu đỏ nằm phía trên trục hoành và đường cong màu xanh nằm phía dưới trục hoành.

Mặt khác, hàm số y = –3x2 có hệ số a = –3 < 0. Do vậy, đường cong màu xanh chính là đồ thị của hàm số y = –3x2.

Chia sẻ, đánh giá bài viết
1
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 9 Kết nối tri thức

    Xem thêm