Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 9 Kết nối tri thức Bài 19: Phương trình bậc hai một ẩn

Bài 19: Phương trình bậc hai một ẩn

Giải Toán 9 Kết nối tri thức Bài 19: Phương trình bậc hai một ẩn hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Kết nối tri thức tập 2 trang 11, 12, 13, 14, 15, 16, 17, giúp các em nắm vững kiến thức và luyện giải môn Toán lớp 9. Mời các bạn tham khảo.

Hoạt động 1 trang 10 Toán 9 Tập 2:

Xét bài toán trong tình huống mở đầu.

Gọi x (m) là bề rộng của mặt đường (0 < x < 8). Tính chiều dài và chiều rộng của bể bơi theo x.

Hướng dẫn giải:

Chiều dài của bể bơi là: 28 – x – x = 28 – 2x (m).

Chiều rộng của bể bơi là: 16 – x – x = 16 – 2x (m).

Hoạt động 2 trang 10 Toán 9 Tập 2

Dựa vào kết quả Hoạt động 1, tính diện tích của bể bơi theo x.

Hướng dẫn giải:

Diện tích của bể bơi theo x là:

S = (28 – 2x)(16 – 2x) = 448 – 56x – 32x + 4x2 = 4x2 – 88x + 448 (m2).

Hoạt động 3 trang 10 Toán 9 Tập 2

Sử dụng giả thiết và kết quả Hoạt động 2, hãy viết phương trình để tìm x.

Hướng dẫn giải:

Theo bài, diện tích của bể bơi là S = 288 m2 nên ta có phương trình:

4x2 – 88x + 448 = 288

4x2 – 88x + 160 = 0.

Tranh luận trang 11 Toán 9 Tập 2

Anh Pi nói rằng: “Phương trình (ẩn x) mx2 + 2x + 1 = 0 (m là một số cho trước) là một phương trình bậc hai với a = m, b = 2, c = 1”.

Ý kiến của em thế nào?

Hướng dẫn giải:

Ta có:

⦁ Nếu m = 0, ta có phương trình 2x + 1 = 0, đây không phải là phương trình bậc hai.

⦁ Nếu m ≠ 0, phương trình (ẩn x) mx2 + 2x + 1 = 0 là một phương trình bậc hai với a = m, b = 2, c = 1.

Vậy phương trình (ẩn x) mx2 + 2x + 1 = 0 (m là một số cho trước khác 0) là một phương trình bậc hai với a = m, b = 2, c = 1.

Luyện tập 2 trang 12 Toán 9 Tập 2

Giải các phương trình sau:

a) 2x2 + 6x = 0;

b) 5x2 + 11x = 0.

Hướng dẫn giải:

a) 2x2 + 6x = 0

2x(x + 3) = 0

x = 0 hoặc x + 3 = 0

x = 0 hoặc x = –3.

Vậy phương trình có hai nghiệm x1 = 0, x2 = –3.

b) 5x2 + 11x = 0

x(5x + 11) = 0

x = 0 hoặc 5x + 11 = 0

x = 0 hoặc x=-\frac{11}{5}\(x=-\frac{11}{5}\).

Vậy phương trình có hai nghiệm x1 = 0, x2 = -\frac{11}{5}\(-\frac{11}{5}\)

Thử thách nhỏ trang 14 Toán 9 Tập 2

Anh Pi hỏi: “Có thể nói gì về nghiệm của phương trình bậc hai ax2 + bx + c = 0 nếu a và c trái dấu?”

Em hãy trả lời câu hỏi của anh Pi.

Hướng dẫn giải:

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

Ta có ∆ = b2 – 4ac.

Do a và c trái dấu nên ac < 0, nên – 4ac > 0, suy ra b2 – 4ac > 0 hay ∆ > 0.

Khi đó, phương trình bậc hai ax2 + bx + c = 0 luôn có hai nghiệm phân biệt.

Vậy phương trình bậc hai ax2 + bx + c = 0 luôn có hai nghiệm phân biệt nếu a và c trái dấu.

Bài 19.8 trang 16 Toán 9 Tập 2

Đưa các phương trình sau về dạng ax2 + bx + x = 0 và xác định các hệ số a, b, c của phương trình đó.

a) 3x2 + 2x – 1 = x2 – x;

b) (2x + 1)2 = x2 + 1.

Hướng dẫn giải:

a) 3x2 + 2x – 1 = x2 – x

3x2 – x2 + 2x + x – 1 = 0

2x2 + 3x – 1 = 0

Phương trình trên có a = 2, b = 3 và c = –1.

b) (2x + 1)2 = x2 + 1

4x2 + 4x + 1 – x2 – 1 = 0

3x2 + 4x = 0.

Phương trình trên có a = 3, b = 4 và c = 0.

Bài 19.10 trang 16 Toán 9 Tập 2

Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức ∆ và xác định số nghiệm của mỗi phương trình sau:

a) 11x2 + 13x – 1 = 0;

b) 9x2 + 42x + 49 = 0;

c) x2 – 2x + 3 = 0.

Hướng dẫn giải:

a) 11x2 + 13x – 1 = 0

Ta có a = 11, b = 13, c = –1 và ∆ = 132 – 4.11.(–1) = 213 > 0.

Vậy phương trình trên có hai nghiệm phân biệt.

b) 9x2 + 42x + 49 = 0

Ta có a = 9, b = 42, c = 49 và ∆ = 422 – 4.9.49 = 0.

Vậy phương trình trên có nghiệm kép.

c) x2 – 2x + 3 = 0

Ta có a = 1, b = –2, c = 3 và ∆ = (–2)2 – 4.1.3 = –8 < 0.

Vậy phương trình vô nghiệm (không có nghiệm).

Bài 19.13 trang 17 Toán 9 Tập 2

Độ cao h (mét) so với mặt đất của một vật được phóng thẳng đứng lên trên từ mặt đất với vận tốc ban đầu v0 = 19,6 m/s cho bởi công thức h = 19,6t – 4,9t2, ở đó t là thời gian kể từ khi phóng (giây) (theo Vật lí đại cương, NXB Giáo dục Việt Nam, 2016). Hỏi sau bao lâu kể từ khi phóng, vật sẽ rơi trở lại mặt đất?

Hướng dẫn giải:

Khi vật rơi trở lại mặt đất, độ cao h = 0 hay 19,6t – 4,9t2 = 0 với t > 0.

Giải phương trình:

19,6t – 4,9t2 = 0

t(19,6 – 4,9t) = 0

t = 0 hoặc 19,6 – 4,9t = 0

t = 0 hoặc 4,9t = 19,6

t = 0 hoặc t = 4

Ta thấy chỉ có giá trị t = 4 thỏa mãn điều kiện t > 0.

Vậy kể từ khi phóng sau 4 giây vật sẽ rơi trở lại mặt đất.

Bài 19.14 trang 17 Toán 9 Tập 2

Kích thước màn hình ti vi hình chữ nhật được xác định bằng độ dài đường chéo. Ti vi truyền thống có định dạng 4 : 3, nghĩa là tỉ lệ giữa chiều dài và chiều rộng của màn hình là 4 : 3. Hỏi diện tích của màn hình ti vi truyền thống 37 in là bao nhiêu? Diện tích của màn hình ti vi LCD 37 in có định dạng 16 : 9 là bao nhiêu? Màn hình ti vi nào có diện tích lớn hơn? Ở đây, các diện tích của màn hình được tính bằng inch vuông.

Bài 6.14 trang 17 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Hướng dẫn giải:

Tỉ lệ giữa chiều dài và chiều rộng là 4 : 3, gọi chiều dài là 4x (in) thì chiều rộng là 3x (in) (x > 0).

Theo định lí Pythagore, ta có:

(3x)2 + (4x)2 = 372

9x2 + 16x2 = 1 369

25x2 = 1 369

x2 = 54,76

x = 7,4 hoặc x = –7,4.

Ta thấy chỉ có x = 7,4 thỏa mãn điều kiện x > 0.

Diện tích của màn hình ti vi truyền thống 37 in là:

4x . 3x = 12x2 = 12 . 54,76 = 657,12 (in2).

Tương tự, tỉ lệ giữa chiều dài và chiều rộng là 16 : 9, gọi chiều dài là 16y (in) thì chiều rộng là 9y (in) (y > 0).

Theo định lí Pythagore, ta có:

(9x)2 + (16x)2 = 372

81x2 + 256x2 = 1 369

337x2 = 1 369

x2=\frac{1369}{337}\(\frac{1369}{337}\).

Diện tích của màn hình ti vi LCD 37 in là:

16x ⋅ 9x = 144x2 = 144 ⋅ \frac{1369}{337}\(\frac{1369}{337}\) ≈ 585 (in2).

Ta thấy 657,12 > 585.

Do đó, màn hình ti vi truyền thống có diện tích lớn hơn.

Bài 19.15 trang 17 Toán 9 Tập 2

Một mảnh vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 6 m và có diện tích là 280 m2. Tính các kích thước của mảnh vườn đó.

Hướng dẫn giải:

Gọi chiều rộng mảnh vườn hình chữ nhật là x (m) (x > 0).

Chiều rộng ngắn hơn chiều dài 6 m nên chiều dài mảnh vườn là x + 6 (m).

Diện tích mảnh vườn là: x(x + 6) (m2).

Theo bài, mảnh vườn có diện tích là 280 m2 nên ta có phương trình:

x(x + 6) = 280.

x2 + 6x – 280 = 0.

Ta có ∆’ = 32 – 1.(–280) = 289 > 0 và \sqrt{289} =17\(\sqrt{289} =17\)

Do đó, phương trình có hai nghiệm phân biệt:

x1 = –3 + 17 = 14, x2 = –3 – 17 = –20.

Ta thấy chỉ có giá trị x1 = 14 thỏa mãn điều kiện x > 0.

Vậy chiều rộng mảnh vườn là 14 m và chiều dài mảnh vườn là 14 + 6 = 20 (m).

Chia sẻ, đánh giá bài viết
1
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 9 Kết nối tri thức

    Xem thêm