Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Giải Toán 9 trang 90 tập 1 Kết nối tri thức

Lớp: Lớp 9
Môn: Toán
Dạng tài liệu: Giải bài tập
Bộ sách: Kết nối tri thức với cuộc sống
Phân loại: Tài liệu Tính phí

Giải Toán 9 trang 90 tập 1 Kết nối tri thức hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Kết nối tri thức tập 1 trang 90.

Luyện tập 2 Trang 90 Toán 9 Tập 1

Cho điểm C nằm trên đường tròn (O). Đường trung trực của đoạn OC cắt (O) tại A và B. Tính số đo của các cung \overset \frown {ACB}\(\overset \frown {ACB}\)\overset \frown { ABC}\(\overset \frown { ABC}\).

Hướng dẫn giải:

Gọi D là trung điểm của OC.

Xét tam giác vuông OAD có OD = 1/2 OC = 1/2 OA

\cos \widehat{AOD}=\frac{OD}{OA}=\frac{1}{2}\(\cos \widehat{AOD}=\frac{OD}{OA}=\frac{1}{2}\)

Suy ra \widehat{AOC} =\widehat{BOC} =60^{\circ}\(\widehat{AOC} =\widehat{BOC} =60^{\circ}\)

Do đó \widehat{AOB} =2\widehat{AOC} =120^{\circ}\(\widehat{AOB} =2\widehat{AOC} =120^{\circ}\)

Vậy sđ \overset \frown {ACB}\(\overset \frown {ACB}\) = 120o.

Ta có: sđ \overset \frown {ACB}\(\overset \frown {ACB}\) = 360o - 60o = 300o.

Bài 5.5 Trang 90 Toán 9 Tập 1

Cho nửa đường tròn đường kính AB và một điểm M tùy ý thuộc nửa đường tròn đó. Chứng minh rằng khoảng cách từ M đến AB không lớn hơn \frac{AB}{2}\(\frac{AB}{2}\).

Hướng dẫn giải:

Kẻ MH ⊥ AB (M thuộc AB) 

Gọi M' đối xứng với M qua AB và cắt AB tại H.

Khi đó H là trung điểm của MM'

Mặt khác: Do AB là trục đối xứng của đường tròn nên M' thuộc đường tròn đó.

Vậy MM' là một dây của đường tròn.

Do đó MM' ≤ AB hay 2MH ≤ AB

Vậy MM\(MM'\le\frac{AB}{2}\).

Bài 5.6 Trang 90 Toán 9 Tập 1

Cho đường tròn (O; 5 cm) và AB là một dây bất kì của đường tròn đó. Biết AB = 6 cm.

a) Tính khoảng cách từ O đến đường thẳng AB.

b) Tính tan α nếu góc ở tâm chắn cung AB bằng 2α.

Hướng dẫn giải:

a) Gọi C là trung điểm của AB nên AC = CB = 3 cm

Tam giác OAB cân tại O (OA = OB) có OC là đường trung tuyến

Suy ra OC cũng là đường cao hay OC ⊥ AB

Vậy khoảng cách từ O đến đường thẳng AB là OC

Xét tam giác OAC vuông tại C có:

OC2 + AC2 = OA2 (định lý Pythagore)

Suy ra OC2 = OA2 - AC2 = 52 - 32 = 16

Vậy OC = 4 cm.

b) Tam giác cân OAB có OC là đường trung tuyến nên OC cũng là đường phân giác

Do đó \widehat {AOC} = \widehat {BOC} =\frac{\widehat {AOB}}{ 2} =\alpha\(\widehat {AOC} = \widehat {BOC} =\frac{\widehat {AOB}}{ 2} =\alpha\) 

Xét tam giác OAC vuông tại C ta có:

\tan \alpha =\tan \widehat{AOC}=\frac{AC}{OC} =\frac{3}{4}\(\tan \alpha =\tan \widehat{AOC}=\frac{AC}{OC} =\frac{3}{4}\)

Bài 5.7 Trang 90 Toán 9 Tập 1

Tâm O của một đường tròn cách dây AB của nó một khoảng 3 cm. Tính bán kính của đường tròn (O), biết rằng dây cung nhỏ AB có số đo bằng 100o (làm tròn kết quả đến hàng phần mười).

Hướng dẫn giải:

Do cung nhỏ AB có số đo bằng 100o nên \widehat {AOB} = \text{sđ }\overset\frown{AB}=100{}^\circ\(\widehat {AOB} = \text{sđ }\overset\frown{AB}=100{}^\circ\)

Gọi C là trung điểm của AB.

Tam giác OAB cân tại O (OA = OB) có OC là đường trung tuyến

Suy ra OC cũng là đường cao và là đường phân giác

Do đó OC ⊥ AB và \widehat {AOC} =\widehat {BOC}= \frac{{100^\circ }}{2} = 50^\circ\(\widehat {AOC} =\widehat {BOC}= \frac{{100^\circ }}{2} = 50^\circ\)

Xét tam giác OAC vuông tại C có:

\cos \widehat {AOC} = \frac{{OC}}{{OA}}\(\cos \widehat {AOC} = \frac{{OC}}{{OA}}\)

\Rightarrow OA = \frac{{OC}}{{\cos \widehat {AOC}}} = \frac{3}{{\cos 50^\circ }} \approx 4,67\(\Rightarrow OA = \frac{{OC}}{{\cos \widehat {AOC}}} = \frac{3}{{\cos 50^\circ }} \approx 4,67\) cm

Bài 5.8 Trang 90 Toán 9 Tập 1

Trên mặt một chiếc đồng hồ có các vạch chia như Hình 5.12. Hỏi cứ sau mỗi khoảng thời gian 36 phút:

a) Đầu kim phút vạch trên một cung có số đo bằng bao nhiêu độ?

b) Đầu kim giờ vạch trên một cung có số đo bằng bao nhiêu độ?

Hướng dẫn giải:

 

-----------------------------------------------

---> Xem thêm: Giải Toán 9 trang 91 tập 1 Kết nối tri thức

Lời giải Toán 9 trang 90 Tập 1 Kết nối tri thức với các câu hỏi nằm trong Bài 14: Cung và dây của một đường tròn, được VnDoc biên soạn và đăng tải!

Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 9 Kết nối tri thức

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm