Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 9 trang 40 tập 1 Chân trời sáng tạo

Giải Toán 9 trang 40 Tập 1 CTST hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Chân trời sáng tạo tập 1 trang 40.

Hoạt động 2 Trang 40 Toán 9 tập 1 Chân trời

Một chiếc thang dài 5 m tựa vào bức tường như Hình 3.

a) Nếu chân thang cách chân tường x (m) thì đỉnh thang ở độ cao bao nhiêu so với chân tường?

b) Tính độ cao trên khi x nhận giá trị lần lượt là 1; 2; 3; 4.

Hướng dẫn giải:

a) Áp dụng định lí Pythagore trong tam giác vuông, ta có chiều cao từ đỉnh thang đến chân tường là:

h=\sqrt{5^2-x^2}=\sqrt{25-x^2}h=52x2=25x2 (m)

b) Với x = 1 thì h= \sqrt{25-1^2} =2\sqrt{6}h=2512=26 m

Với x = 2 thì h= \sqrt{25-2^2} =\sqrt{21}h=2522=21 m

Với x = 3 thì h= \sqrt{25-3^2} =4h=2532=4 m

Với x = 4 thì h= \sqrt{25-4^2} =3h=2542=3 m

Thực hành 7 Trang 40 Toán 9 tập 1 Chân trời

Với giá trị nào của x thì biểu thức A=\sqrt{3x+6}A=3x+6 xác định? Tính giá trị của A khi x = 5 (kết quả làm tròn đến chữ số thập phân thứ hai)

Hướng dẫn giải:

Biểu thức A xác định khi 3x + 6 ≥ 0 hay x ≥ − 2.

Ta thấy x = 5 thỏa mãn điều kiện xác định và khi x = 5 ta có

A=\sqrt{3.5+6} =\sqrt{21}A=3.5+6=21

Thực hành 8 Trang 40 Toán 9 tập 1 Chân trời

Cho biểu thức P=\sqrt{a^2-b^2}P=a2b2. Tính giá trị của P khi:

a) a = 5, b = 0

b) a = 5; b = − 5

c) a = 2, b = − 4

Hướng dẫn giải:

a) Với a = 5, b = 0, ta có a2 − b2 = 52 − 02 = 25.

Khi đó, P=\sqrt{25}=5P=25=5

b) Với a = 5, b = − 5, ta có a2 − b2 = 52 − (− 5)2 = 0.

Khi đó, P = 0

c) Với a = 2, b = − 4, ta có a2 − b2 = 22 − (− 4)2 = − 12

Vì − 12 < 0 nên biểu thức P không xác định tại a = 2, b = − 4.

Vận dụng 2 Trang 40 Toán 9 tập 1 Chân trời

Một trạm phát sóng được đặt ở vị trí B cách đường tàu một khoảng AB = 300 m. Đầu tàu đang ở vị trí C, cách vị trí A một khoảng AC = x (m) (Hình 4)

a) Viết biểu thức (theo x) biểu thị khoảng cách từ trạm phát sóng đến đầu tàu.

b) Tính khoảng cách trên khi x = 400, x = 1 000 (kết quả làm tròn đến hàng đơn vị của mét)

Hướng dẫn giải:

a) Áp dụng định lý Pythagore trong tam giác vuông:

Biểu thức biểu thị khoảng cách từ trạm phát sóng đến đầu tàu là:

\sqrt{300^2+x^2}3002+x2 (m)

b) Với x = 400, khoảng cách từ trạm phát sóng đến đầu tàu là:

\sqrt{300^2+400^2} =5003002+4002=500 (m)

Với x = 1 000, khoảng cách từ trạm phát sóng đến đầu tàu là:

\sqrt{300^2+1 000^2} \approx1\ 0443002+100021 044 (m)

----------------------------------------------

---> Xem thêm: Giải Toán 9 trang 41 tập 1 Chân trời sáng tạo

Lời giải Toán 9 trang 40 Tập 1 Chân trời sáng tạo với các câu hỏi nằm trong Bài 1: Căn bậc hai, được VnDoc biên soạn và đăng tải!

Chia sẻ, đánh giá bài viết
1
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 9 Chân trời sáng tạo

    Xem thêm
    Chia sẻ
    Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
    Mã QR Code
    Đóng