Toán 9 Kết nối tri thức Luyện tập chung trang 19
Giải Toán 9 KNTT Luyện tập chung trang 19
Giải Toán 9 Kết nối tri thức Luyện tập chung hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Kết nối tri thức tập trang 20.
Bài 1.10 trang 20 Toán 9 Tập 1 KNTT
Cho hai phương trình:
–2x + 5y = 7; (1)
4x – 3y = 7. (2)
Trong các cặp số (2; 0), (1; –1), (–1; 1), (–1; 6), (4; 3) và (–2; –5), cặp số nào là:
a) Nghiệm của phương trình (1)?
b) Nghiệm của phương trình (2)?
c) Nghiệm của hệ gồm phương trình (1) và phương trình (2)?
Hướng dẫn giải
a)
• Thay x = 2; y = 0 vào phương trình (1), ta có:
–2x + 5y = (–2) . 2 + 5 . 0 = (−4) + 0 = −4 ≠ 7 nên (2; 0) không phải là nghiệm của phương trình (1).
• Thay x = 1; y = –1 vào phương trình (1), ta có:
–2x + 5y = (–2) . 1 + 5 . (–1) = (–2) – 5 = –7 ≠ 7 nên (1; –1) không phải là nghiệm của phương trình (1).
• Thay x = –1; y = 1 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–1) + 5 . 1 = 2 + 5 = 7 nên (–1; 1) là nghiệm của phương trình (1).
• Thay x = –1; y = 6 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–1) + 5 . 6 = 2 + 30 = 32 ≠ 7 nên (–1; 6) không phải là nghiệm của phương trình (1).
• Thay x = 4; y = 3 vào phương trình (1), ta có:
–2x + 5y = (–2) . 4 + 5 . 3 = –8 + 15 = 7 nên (4; 3) là nghiệm của phương trình (1).
• Thay x = –2; y = –5 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–2) + 5 . (–5) = 4 – 25 = –21 ≠ 7 nên (–2; –5) không phải là nghiệm của phương trình (1).
Vậy cặp số là nghiệm của phương trình (1) là (–1; 1) và (4; 3).
b)
• Thay x = 2; y = 0 vào phương trình (2), ta có:
4x − 3y = 4 . 2 − 3 . 0 = 8 − 0 = 8 ≠ 7 nên (2; 0) không phải là nghiệm của phương trình (2).
• Thay x = 1; y = −1 vào phương trình (2), ta có:
4x − 3y = 4 . 1 − 3 . (−1) = 4 + 3 = 7 nên (1; −1) là nghiệm của phương trình (2).
• Thay x = –1; y = 1 vào phương trình (2), ta có:
4x − 3y = 4 . (–1) − 3 . 1 = −4 − 3 = −7 ≠ 7 nên (−1; 1) không phải là nghiệm của phương trình (2).
• Thay x = −1; y = 6 vào phương trình (2), ta có:
4x − 3y = 4 . (−1) − 3 . 6 = −4 – 18 = –22 ≠ 7 nên (–1; 6) không phải là nghiệm của phương trình (2).
• Thay x = 4; y = 3 vào phương trình (2), ta có:
4x − 3y = 4 . 4 − 3 . 3 = 16 – 9 = 7 nên (4; 3) là nghiệm của phương trình (2).
• Thay x = –2; y = –5 vào phương trình (2), ta có:
4x − 3y = 4 . (–2) − 3 . (–5) = –8 + 15 = 7 nên (–2; –5) là nghiệm của phương trình (2).
Vậy cặp số là nghiệm của phương trình (2) là (1; −1), (4; 3) và (–2; –5).
b) Ta thấy cặp số (4; 3) là nghiệm chung của phương trình (1) và phương trình (2).
Do đó, nghiệm của hệ gồm phương trình (1) và phương trình (2) là cặp số (4; 3).
Bài 1.11 trang 20 Toán 9 Tập 1 KNTT:
Giải các hệ phương trình sau bằng phương pháp thế:
\(a) \left\{ \begin{array}{l}2x - y = 1\\x - 2y = - 1;\end{array} \right.\)
\(b) \left\{ \begin{array}{l}0,5x - 0,5y = 0,5\\1,2x - 1,2y = 1,2;\end{array} \right.\)
\(c) \left\{ \begin{array}{l}x + 3y = - 2\\5x - 4y = 28.\end{array} \right.\)
Hướng dẫn giải
a) Từ phương trình thứ nhất ta có y = 2x – 1. Thế vào phương trình thứ hai, ta được
x – 2(2x – 1) = –1, tức là x – 4x + 2 = –1, suy ra –3x = –3 hay x = 1.
Từ đó y = 2 . 1 – 1 = 1.
Vậy hệ phương trình đã cho có nghiệm là (1; 1).
b) Chia hai vế của phương trình thứ nhất cho 0,5 và chia hai vế của phương trình thứ hai cho 1,2 ta được:
\(\left\{ \begin{array}{l}x - y = 1\\x - y = 1;\end{array} \right.\)
Từ phương trình thứ nhất ta có y = x – 1. (1)
Thế vào phương trình thứ hai, ta được
x – (x – 1) = 1, tức là x – x + 1 = 1, suy ra 0x = 0. (2)
Ta thấy mọi giá trị của x đều thỏa mãn hệ thức (2).
Với mọi giá trị tùy ý của x, giá trị tương ứng của y được tính bởi (1).
Vậy hệ phương trình đã cho có nghiệm là (x; x – 1) với x ∈ ℝ tùy ý.
c) Từ phương trình thứ nhất ta có x = –3y – 2. Thế vào phương trình thứ hai, ta được
5(–3y – 2) – 4y = 28, tức là –15y – 10 – 4y = 28, suy ra –19y = 38 hay y = –2.
Từ đó x = (–3) . (–2) – 2 = 4.
Vậy hệ phương trình đã cho có nghiệm là (4; –2).
Bài 1.13 trang 20 Toán 9 Tập 1 KNTT:
Tìm các hệ số x, y trong phản ứng hóa học đã được cân bằng sau:
4Al + xO2 → yAl2O3.
Hướng dẫn giải
Vì số nguyên tử Al và O ở cả hai vế của phương trình phản ứng bằng nhau nên ta có hệ phương trình
Số nguyên tử Al và O ở cả hai vế của phản ứng phải bằng nhau nên ta có hệ phương trình\(\left\{ \begin{array}{l}4 = 2y\\2x = 3y\end{array} \right. hay \left\{ \begin{array}{l}y = 2\\2x = 3y\end{array} \right.\)
Với \(y = 2\) thay vào phương trình thứ 2 ta có \(2x = 3.2\) nên \(x = 3.\) Vậy \(x = 3;y = 2.\)
Bài 1.14 trang 20 Toán 9 Tập 1 KNTT:
Tìm a và b sao cho hệ phương trình \(\left\{ \begin{array}{l}ax + by = 1\\ax + \left( {b - 2} \right)y = 3\end{array} \right.\) có nghiệm là \(\left( {1; - 2} \right).\)
\(\left( {1; - 2} \right).\)