Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 9 Kết nối tri thức Luyện tập chung trang 19

Giải Toán 9 Kết nối tri thức Luyện tập chung hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Kết nối tri thức tập trang 20.

Bài 1.10 trang 20 Toán 9 Tập 1 KNTT

Cho hai phương trình:

–2x + 5y = 7; (1)

4x – 3y = 7. (2)

Trong các cặp số (2; 0), (1; –1), (–1; 1), (–1; 6), (4; 3) và (–2; –5), cặp số nào là:

a) Nghiệm của phương trình (1)?

b) Nghiệm của phương trình (2)?

c) Nghiệm của hệ gồm phương trình (1) và phương trình (2)?

Hướng dẫn giải

a)

• Thay x = 2; y = 0 vào phương trình (1), ta có:

–2x + 5y = (–2) . 2 + 5 . 0 = (−4) + 0 = −4 ≠ 7 nên (2; 0) không phải là nghiệm của phương trình (1).

• Thay x = 1; y = –1 vào phương trình (1), ta có:

–2x + 5y = (–2) . 1 + 5 . (–1) = (–2) – 5 = –7 ≠ 7 nên (1; –1) không phải là nghiệm của phương trình (1).

• Thay x = –1; y = 1 vào phương trình (1), ta có:

–2x + 5y = (–2) . (–1) + 5 . 1 = 2 + 5 = 7 nên (–1; 1) là nghiệm của phương trình (1).

• Thay x = –1; y = 6 vào phương trình (1), ta có:

–2x + 5y = (–2) . (–1) + 5 . 6 = 2 + 30 = 32 ≠ 7 nên (–1; 6) không phải là nghiệm của phương trình (1).

• Thay x = 4; y = 3 vào phương trình (1), ta có:

–2x + 5y = (–2) . 4 + 5 . 3 = –8 + 15 = 7 nên (4; 3) là nghiệm của phương trình (1).

• Thay x = –2; y = –5 vào phương trình (1), ta có:

–2x + 5y = (–2) . (–2) + 5 . (–5) = 4 – 25 = –21 ≠ 7 nên (–2; –5) không phải là nghiệm của phương trình (1).

Vậy cặp số là nghiệm của phương trình (1) là (–1; 1) và (4; 3).

b)

• Thay x = 2; y = 0 vào phương trình (2), ta có:

4x − 3y = 4 . 2 − 3 . 0 = 8 − 0 = 8 ≠ 7 nên (2; 0) không phải là nghiệm của phương trình (2).

• Thay x = 1; y = −1 vào phương trình (2), ta có:

4x − 3y = 4 . 1 − 3 . (−1) = 4 + 3 = 7 nên (1; −1) là nghiệm của phương trình (2).

• Thay x = –1; y = 1 vào phương trình (2), ta có:

4x − 3y = 4 . (–1) − 3 . 1 = −4 − 3 = −7 ≠ 7 nên (−1; 1) không phải là nghiệm của phương trình (2).

• Thay x = −1; y = 6 vào phương trình (2), ta có:

4x − 3y = 4 . (−1) − 3 . 6 = −4 – 18 = –22 ≠ 7 nên (–1; 6) không phải là nghiệm của phương trình (2).

• Thay x = 4; y = 3 vào phương trình (2), ta có:

4x − 3y = 4 . 4 − 3 . 3 = 16 – 9 = 7 nên (4; 3) là nghiệm của phương trình (2).

• Thay x = –2; y = –5 vào phương trình (2), ta có:

4x − 3y = 4 . (–2) − 3 . (–5) = –8 + 15 = 7 nên (–2; –5) là nghiệm của phương trình (2).

Vậy cặp số là nghiệm của phương trình (2) là (1; −1), (4; 3) và (–2; –5).

b) Ta thấy cặp số (4; 3) là nghiệm chung của phương trình (1) và phương trình (2).

Do đó, nghiệm của hệ gồm phương trình (1) và phương trình (2) là cặp số (4; 3).

Bài 1.11 trang 20 Toán 9 Tập 1 KNTT:

Giải các hệ phương trình sau bằng phương pháp thế:

a) \left\{ \begin{array}{l}2x - y = 1\\x - 2y = - 1;\end{array} \right.a){2xy=1x2y=1;

b) \left\{ \begin{array}{l}0,5x - 0,5y = 0,5\\1,2x - 1,2y = 1,2;\end{array} \right.b){0,5x0,5y=0,51,2x1,2y=1,2;

c) \left\{ \begin{array}{l}x + 3y = - 2\\5x - 4y = 28.\end{array} \right.c){x+3y=25x4y=28.

Hướng dẫn giải

a) Từ phương trình thứ nhất ta có y = 2x – 1. Thế vào phương trình thứ hai, ta được

x – 2(2x – 1) = –1, tức là x – 4x + 2 = –1, suy ra –3x = –3 hay x = 1.

Từ đó y = 2 . 1 – 1 = 1.

Vậy hệ phương trình đã cho có nghiệm là (1; 1).

b) Chia hai vế của phương trình thứ nhất cho 0,5 và chia hai vế của phương trình thứ hai cho 1,2 ta được:

\left\{ \begin{array}{l}x - y = 1\\x - y = 1;\end{array} \right.{xy=1xy=1;

Từ phương trình thứ nhất ta có y = x – 1. (1)

Thế vào phương trình thứ hai, ta được

x – (x – 1) = 1, tức là x – x + 1 = 1, suy ra 0x = 0. (2)

Ta thấy mọi giá trị của x đều thỏa mãn hệ thức (2).

Với mọi giá trị tùy ý của x, giá trị tương ứng của y được tính bởi (1).

Vậy hệ phương trình đã cho có nghiệm là (x; x – 1) với x ∈ ℝ tùy ý.

c) Từ phương trình thứ nhất ta có x = –3y – 2. Thế vào phương trình thứ hai, ta được

5(–3y – 2) – 4y = 28, tức là –15y – 10 – 4y = 28, suy ra –19y = 38 hay y = –2.

Từ đó x = (–3) . (–2) – 2 = 4.

Vậy hệ phương trình đã cho có nghiệm là (4; –2).

Bài 1.13 trang 20 Toán 9 Tập 1 KNTT:

Tìm các hệ số x, y trong phản ứng hóa học đã được cân bằng sau:

4Al + xO2 → yAl2O3.

Hướng dẫn giải

Vì số nguyên tử Al và O ở cả hai vế của phương trình phản ứng bằng nhau nên ta có hệ phương trình

Số nguyên tử Al và O ở cả hai vế của phản ứng phải bằng nhau nên ta có hệ phương trình\left\{ \begin{array}{l}4 = 2y\\2x = 3y\end{array} \right. hay \left\{ \begin{array}{l}y = 2\\2x = 3y\end{array} \right.{4=2y2x=3yhay{y=22x=3y

Với y = 2y=2 thay vào phương trình thứ 2 ta có 2x = 3.22x=3.2 nên x = 3.x=3. Vậy x = 3;y = 2.x=3;y=2.

Bài 1.14 trang 20 Toán 9 Tập 1 KNTT:

Tìm a và b sao cho hệ phương trình \left\{ \begin{array}{l}ax + by = 1\\ax + \left( {b - 2} \right)y = 3\end{array} \right.{ax+by=1ax+(b2)y=3 có nghiệm là \left( {1; - 2} \right).(1;2).

\left( {1; - 2} \right).(1;2).

Xem thêm các bài Tìm bài trong mục này khác:
Chia sẻ, đánh giá bài viết
1
Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 9 Kết nối tri thức

    Xem thêm
    Chia sẻ
    Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
    Mã QR Code
    Đóng