Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Toán 9 Kết nối tri thức Bài tập cuối chương 8

Lớp: Lớp 9
Môn: Toán
Dạng tài liệu: Giải bài tập
Bộ sách: Kết nối tri thức với cuộc sống
Loại File: PDF
Phân loại: Tài liệu Tính phí

Giải Toán 9 Kết nối tri thức Bài tập cuối chương 8 hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Kết nối tri thức tập 2 trang 66, giúp các em nắm vững kiến thức và luyện giải môn Toán lớp 9. Mời các bạn tham khảo.

 Bài 8.13 trang 66 Toán 9 Tập 2

Có hai túi I và II. Túi I chứa 4 tấm thẻ, đánh số 1; 2; 3; 4. Túi II chứa 5 tấm thẻ, đánh số 1; 2; 3; 4; 5. Rút ngẫu nhiên một tấm thẻ từ mỗi túi I và II. Xác suất để hai tấm thẻ rút ra đều ghi số chẵn là

A. \frac{1}{5}\(\frac{1}{5}\).

B. \frac{3}{{20}}\(\frac{3}{{20}}\).

C. \frac{1}{4}\(\frac{1}{4}\).

D. \frac{4}{{21}}\(\frac{4}{{21}}\).

Hướng dẫn giải:

Kết quả phép thử được viết dưới dạng (a, b) trong đó a, b lần lượt là các số trên các thẻ ở hai túi I và II.

Ta có bảng miêu tả không gian mẫu là:

Bài 8.13 trang 66 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Do đó, số phần tử của không gian mẫu \Omega\(\Omega\) là 20.

Vì rút ngẫu nhiên một tấm thẻ từ mỗi túi I và II nên các kết quả có thể xảy ra ở trên là đồng khả năng.

Có 4 kết quả thuận lợi của biến cố “Hai tấm thẻ rút ra đều ghi số chẵn” là: (2, 2), (2, 4), (4, 2), (4, 4). Do đó, P = \frac{4}{{20}} = \frac{1}{5}\(P = \frac{4}{{20}} = \frac{1}{5}\).

Chọn A

Bài 8.14 trang 66 Toán 9 Tập 2

Một túi đựng 4 viên bi có cùng khối lượng và kích thước, được đánh số 1; 2; 3; 4. Lấy ngẫu nhiên hai viên bi từ trong túi. Xác suất để tích hai số ghi trên hai viên bi lớn hơn 3 là

A. \frac{5}{7}\(\frac{5}{7}\).

B. \frac{2}{3}\(\frac{2}{3}\).

C. \frac{3}{4}\(\frac{3}{4}\).

D. \frac{5}{6}\(\frac{5}{6}\).

Hướng dẫn giải:

Kết quả phép thử được viết dưới dạng (a, b) trong đó a, b lần lượt là các số trên hai viên bi trong túi. Vì lấy đồng thời 2 viên bi nên a \ne b\(a \ne b\).

Do đó, không gian mẫu là: \operatorname\Omega\;={\{{(1,2)},{(1,3)},{(1,4)},{(2,3)},{(2,4)},{(3,4)}\}}\(\operatorname\Omega\;={\{{(1,2)},{(1,3)},{(1,4)},{(2,3)},{(2,4)},{(3,4)}\}}\) nên số phần tử của không gian mẫu \Omega\(\Omega\) là 6.

Vì lấy ngẫu nhiên hai viên bi từ trong túi nên các kết quả có thể xảy ra ở trên là đồng khả năng.

Có 4 kết quả thuận lợi của biến cố “Tích hai số ghi trên hai viên bi lớn hơn 3” là: (1, 4), (2, 3), (2, 4), (3, 4). Do đó, P = \frac{4}{6} = \frac{2}{3}\(P = \frac{4}{6} = \frac{2}{3}\).

Chọn B

Bài 8.15 trang 66 Toán 9 Tập 2

Có hai túi I và II. Túi I chứa 3 tấm thẻ, đánh số 2; 3; 4. Túi II chứa 2 tấm thẻ, đánh số 5; 6. Từ mỗi túi I và II, rút ngẫu nhiên một tấm thẻ. Tính xác suất của các biến cố sau:

A: “Hai số ghi trên thẻ chênh lệch nhau 2 đơn vị”;

B: “Hai số ghi trên thẻ chênh lệch nhau lớn hơn 2 đơn vị”;

C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”;

D: “Tổng hai số ghi trên hai tấm thẻ là một số nguyên tố”.

Hướng dẫn giải:

Kết quả phép thử được viết dưới dạng (a, b) trong đó a, b lần lượt là các số viết trên các thẻ trong hai túi I và II.

Do đó, không gian mẫu là: \operatorname\Omega\;={\{{(2,5)},{(2,6)},{(3,5)},{(3,6)},{(4,5)},{(4,6)}\}}\(\operatorname\Omega\;={\{{(2,5)},{(2,6)},{(3,5)},{(3,6)},{(4,5)},{(4,6)}\}}\) nên số phần tử của không gian mẫu \Omega\(\Omega\) là 6.

Vì rút ngẫu nhiên một tấm thẻ từ mỗi túi I và II nên các kết quả có thể xảy ra ở trên là đồng khả năng.

Có 2 kết quả thuận lợi của biến cố A là: (4, 6), (3, 5). Do đó, P\left( A \right) = \frac{2}{6} = \frac{1}{3}\(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\).

Có 3 kết quả thuận lợi của biến cố B là: (2, 5), (2, 6), (3, 6). Do đó, P\left( B \right) = \frac{3}{6} = \frac{1}{2}\(P\left( B \right) = \frac{3}{6} = \frac{1}{2}\).

Có 5 kết quả thuận lợi của biến cố C là: (2, 5), (2, 6), (3, 6), (4, 5), (4, 6). Do đó, P\left( C \right) = \frac{5}{6}\(P\left( C \right) = \frac{5}{6}\).

Có 1 kết quả thuận lợi của biến cố D là: (2, 5). Do đó, P\left( D \right) = \frac{1}{6}\(P\left( D \right) = \frac{1}{6}\).

Bài 8.16 trang 66 Toán 9 Tập 2

Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất của các biến cố sau:

E: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 11”;

F: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 hoặc 9”;

G: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn 6”.

Hướng dẫn giải:

Ta có bảng miêu tả không gian mẫu là:

Bài 8.16 trang 66 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Do đó, số phần tử của không gian mẫu \Omega\(\Omega\) là 36.

Vì gieo đồng thời hai con xúc xắc cân đối, đồng chất nên các kết quả có thể xảy ra là đồng khả năng.

Có 2 kết quả thuận lợi của biến cố E là: (5, 6), (6, 5). Do đó, P\left( E \right) = \frac{2}{{36}} = \frac{1}{{18}}\(P\left( E \right) = \frac{2}{{36}} = \frac{1}{{18}}\).

Có 9 kết quả thuận lợi của biến cố F là: (2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (5, 3), (5, 4), (6, 2), (6, 3). Do đó, P\left( F \right) = \frac{9}{{36}} = \frac{1}{4}\(P\left( F \right) = \frac{9}{{36}} = \frac{1}{4}\).

Có 10 kết quả thuận lợi của biến cố G là: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1). Do đó, P\left( F \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\(P\left( F \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 9 Kết nối tri thức

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm