Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 9 Kết nối tri thức Bài 26: Xác suất của biến cố liên quan tới phép thử

Giải Toán 9 Kết nối tri thức Bài 26: Xác suất của biến cố liên quan tới phép thử hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Kết nối tri thức tập 2 trang 57, 58, 59, giúp các em nắm vững kiến thức và luyện giải môn Toán lớp 9. Mời các bạn tham khảo.

Bài 8.5 trang 63 Toán 9 Tập 2

Chọn ngẫu nhiên một gia đình có hai con. Giả thiết rằng biến cố “Sinh con trai” và biến cố “Sinh con gái” là đồng khả năng. Tính xác suất của các biến cố sau:

a) A: “Gia đình đó có cả con trai và con gái”;

b) B: “Gia đình đó có con trai”.

Hướng dẫn giải

Kết quả phép thử được viết dưới dạng (a, b) trong đó a, b lần lượt là giới tính của người con thứ nhất và người con thứ hai.

Không gian mẫu của phép thử là Ω = {(Trai, Trai); (Trai, Gái); (Gái, Trai); (Gái, Gái)}.

Tập Ω có 4 phần tử.

Theo đầu bài, rằng biến cố “Sinh con trai” và biến cố “Sinh con gái” là đồng khả năng.

a) Có 2 kết quả thuận lợi cho biến cố A là: (Trai, Gái); (Gái, Trai). Do đó, P\left( A \right) = \frac{2}{4} = \frac{1}{2}.\(P\left( A \right) = \frac{2}{4} = \frac{1}{2}.\)

b) Có 3 kết quả thuận lợi của biến cố B là: (Trai, Gái); (Gái; Trai); (Trai; Trai). Do đó, P\left( B \right) = \frac{3}{4}.\(P\left( B \right) = \frac{3}{4}.\)

Bài 8.6 trang 63 Toán 9 Tập 2:

Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất của các biến cố sau:

E: “Có đúng một con xúc xắc xuất hiện mặt 6 chấm”;

F: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”;

G: “Tích của hai chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 6”.

Hướng dẫn giải

Kết quả phép thử được viết dưới dạng (a, b) trong đó a, b lần lượt là số chấm xuất hiện trên hai con xúc xắc I và II.

Ta có bảng miêu tả không gian mẫu là:

Do đó, số phần tử của không gian mẫu \Omega\(\Omega\) là 36.

Vì gieo đồng thời hai con xúc xắc cân đối, đồng chất nên các kết quả có thể xảy là đồng khả năng.

Có 10 kết quả thuận lợi của biến cố E là: (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5). Do đó, P\left( E \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\(P\left( E \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).

Có 11 kết quả thuận lợi của biến cố F là: (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5). Do đó, P\left( F \right) = \frac{{11}}{{36}}\(P\left( F \right) = \frac{{11}}{{36}}\).

Có 14 kết quả thuận lợi của biến cố G là: (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (1, 4), (1, 5), (1, 6). Do đó, P\left( G \right) = \frac{{14}}{{36}} = \frac{7}{{18}}\(P\left( G \right) = \frac{{14}}{{36}} = \frac{7}{{18}}\).

Bài 8.7 trang 63 Toán 9 Tập 2:

Bạn An gieo một đồng xu cân đối và bạn Bình rút ngẫu nhiên một tấm thẻ từ hộp chứa 5 tấm thẻ ghi các số 1; 2; 3; 4; 5. Tính xác suất của các biến cố sau:

E: “Rút được tấm thẻ ghi số lẻ”;

F: “Rút được tấm thẻ ghi số chẵn và đồng xu xuất hiện mặt sấp”;

G: “Rút được tấm thẻ ghi số 5 hoặc đồng xu xuất hiện mặt ngửa”.

Hướng dẫn giải

⦁ Phép thử là bạn An gieo một đồng xu cân đối và bạn Bình rút ngẫu nhiên một tấm thẻ từ hộp chứa 5 tấm thẻ ghi các số 1; 2; 3; 4; 5.

Kết quả của phép thử là (a, b), trong đó a và b tương ứng là mặt xuất hiện của đồng xu (mặt sấp (S), mặt ngửa (N)) và số ghi trên tấm thẻ.

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:

Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 10 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(S, 1); (S, 2); (S, 3); (S, 4); (S, 5); (N, 1); (N, 2); (N, 3); (N, 4); (N, 5)}.

Tập Ω có 10 phần tử.

⦁ Có 6 kết quả thuận lợi cho biến cố E là: (S, 1); (S, 3); (S, 5); (N, 1); (N, 3); (N, 5). Do đó P\left( E \right) = \frac{6}{{10}} = \frac{3}{5}\(P\left( E \right) = \frac{6}{{10}} = \frac{3}{5}\)

⦁ Có 2 kết quả thuận lợi cho biến cố F là: (S, 2); (S, 4). Do đó P\left( F \right) = \frac{2}{{10}} = \frac{1}{5}\(P\left( F \right) = \frac{2}{{10}} = \frac{1}{5}\)

⦁ Có 6 kết quả thuận lợi cho biến cố G là: (S, 5); (N, 1); (N, 2); (N, 3); (N, 4); (N, 5). Do đó P\left( G \right) = \frac{6}{{10}} = \frac{3}{5}\(P\left( G \right) = \frac{6}{{10}} = \frac{3}{5}\)

Bài 8.8 trang 63 Toán 9 Tập 2:

Có hai túi I và II mỗi túi chứa 4 tấm thẻ được đánh số 1; 2; 3; 4. Rút ngẫu nhiên từ mỗi túi ra một tấm thẻ và nhân hai số ghi trên hai tấm thẻ với nhau. Tính xác suất của các biến cố sau:

A: “Kết quả là một số lẻ”;

B: “Kết quả là 1 hoặc một số nguyên tố”.

Hướng dẫn giải

⦁ Phép thử là rút ngẫu nhiên từ mỗi túi ra một tấm thẻ.

Kết quả của phép thử là một cặp số (a, b), trong đó a và b tương ứng là số ghi trên thẻ được rút ra ở túi I và túi II.

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:

Mỗi ô trong bảng là một kết quả có thể. Không gian mẫu là tập hợp 16 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(1, 1); (1, 2); (1, 3); (1, 4); (2, 1); (2, 2); (2, 3); (2, 4); (3, 1); (3, 2); (3, 3); (3, 4); (4, 1); (4, 2); (4, 3); (4, 4)}.

Tập Ω có 16 phần tử.

⦁ Xét biến cố A: “Tích hai số ghi trên hai tấm thẻ là một số lẻ”.

Có 4 kết quả thuận lợi cho biến cố A là: (1, 1); (1, 3); (3, 1); (3, 3). Do đó P(E)=\frac{4}{16} =\frac{1}{4}\(P(E)=\frac{4}{16} =\frac{1}{4}\).

⦁ Xét biến cố B: “Tích hai số ghi trên hai tấm thẻ là 1 hoặc một số nguyên tố”.

Có 6 kết quả thuận lợi cho biến cố B là: (1, 1); (1, 2); (1, 3); (1, 5); (2, 1); (3, 1). Do đó P(F)=\frac{6}{16} =\frac{3}{8}\(P(F)=\frac{6}{16} =\frac{3}{8}\)

Chia sẻ, đánh giá bài viết
1
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 9 Kết nối tri thức

    Xem thêm