Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Tìm tập xác định của Hàm số mũ Lũy thừa Logarit

VnDoc.com xin giới thiệu tới quý thầy cô và các bạn học sinh tài liệu tham khảo Tìm tập xác định của Hàm số mũ Lũy thừa Logarit. Mời các bạn tham khảo và tải về miễn phí tại đây!

Bản quyền thuộc về VnDoc.
Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.

A. Tìm tập xác định của hàm số mũ, hàm lũy thừa

1. Hàm số lũy thừa

Theo quy ước của sách giáo khoa giải tích 12 thì hàm số lũy thừa có tập xác định phụ thuộc vào lũy thừa. Có tất cả 3 trường hợp khác nhau về lũy thừa ảnh hưởng đến tập xác định là:

  • Lũy thừa với số mũ nguyên dương
  • Lũy thừa số mũ nguyên không dương
  • Lũy thừa số mũ không nguyên.

Phương pháp

- Đối với hàm số lũy thừa y={{x}^{a}}\(y={{x}^{a}}\) có tập xác định như sau:

+ a nguyên dương: D=\mathbb{R}\(D=\mathbb{R}\)

+ a nguyên âm hoặc a=0: D=\mathbb{R}\backslash \left\{ 0 \right\}\(a=0: D=\mathbb{R}\backslash \left\{ 0 \right\}\)

+ a không nguyên: D=\left( 0,+\infty \right)\(D=\left( 0,+\infty \right)\)

2. Hàm số mũ

- Hàm số mũ là hàm số có dạng y = ax, với a > 0, a ≠ 1 gọi là cơ số, x gọi là số mũ.

Tập xác định hàm số mũ

  • Với hàm số mũ ta không cần phải xét điều kiện.
  • Đối với hàm số mũ y={{a}^{x}},\left( a>0,a\ne 1 \right)\(y={{a}^{x}},\left( a>0,a\ne 1 \right)\) có tập xác định trên \mathbb{R}\(\mathbb{R}\). Nên khi bài toán yêu cầu tìm tập xác định của hàm số mũ y={{a}^{f\left( x \right)}},\left( a>0,a\ne 1 \right)\(y={{a}^{f\left( x \right)}},\left( a>0,a\ne 1 \right)\) ta chỉ cần tìm điều kiện để f\left( x \right)\(f\left( x \right)\) có nghĩa (xác định).

Nghĩa là: Tập xác định của hàm số mũ là tập số thực \mathbb{R}\(\mathbb{R}\).

Ví dụ: Tìm tập xác định của các hàm số sau:

a. y={{x}^{3}}\(a. y={{x}^{3}}\) b. y={{x}^{\frac{1}{3}}}\(b. y={{x}^{\frac{1}{3}}}\)
c. y={{x}^{-\sqrt{3}}}\(c. y={{x}^{-\sqrt{3}}}\) d. y={{e}^{\sqrt{2{{x}^{2}}-8}}}\(d. y={{e}^{\sqrt{2{{x}^{2}}-8}}}\)

Hướng dẫn giải

a. y={{x}^{3}}\(y={{x}^{3}}\) vì 3 là số nguyên dương nên tập xác định của hàm số là: D=\mathbb{R}\(D=\mathbb{R}\)

b. y={{x}^{\frac{1}{3}}}\(y={{x}^{\frac{1}{3}}}\)\frac{1}{3}\(\frac{1}{3}\) là số hữu tỉ, không nguyên nên tập xác định của hàm số là D=\left( 0,+\infty \right)\(D=\left( 0,+\infty \right)\)

c. y={{x}^{-\sqrt{3}}}\(y={{x}^{-\sqrt{3}}}\)-\sqrt{3}\(-\sqrt{3}\) là số vô tỉ, không nguyên nên tập xác định của hàm số là: D=\left( 0,+\infty \right)\(D=\left( 0,+\infty \right)\)

d. y={{e}^{\sqrt{2{{x}^{2}}-8}}}\(y={{e}^{\sqrt{2{{x}^{2}}-8}}}\)

Điều kiện xác định của hàm số

2{{x}^{2}}-8\ge 0\Leftrightarrow x\in (-\infty ,-4]\cup [4,+\infty )\(2{{x}^{2}}-8\ge 0\Leftrightarrow x\in (-\infty ,-4]\cup [4,+\infty )\)

Vậy tập xác định của hàm số: D=\mathbb{R}\backslash \left( -4,4 \right)\(D=\mathbb{R}\backslash \left( -4,4 \right)\).

Ví dụ: Tìm tập xác định của hàm số: y={{\left( 2{{x}^{2}}-x-6 \right)}^{-2}}\(y={{\left( 2{{x}^{2}}-x-6 \right)}^{-2}}\)

A.D=\mathbb{R}\(A.D=\mathbb{R}\) B. D=\left( -\frac{3}{2},2 \right)\(B. D=\left( -\frac{3}{2},2 \right)\)
C. D=\mathbb{R}\backslash \left\{ -\frac{3}{2},2 \right\}\(C. D=\mathbb{R}\backslash \left\{ -\frac{3}{2},2 \right\}\) D. D=\left( -\infty ,\frac{-3}{2} \right)\cup \left( 2,+\infty \right)\(D. D=\left( -\infty ,\frac{-3}{2} \right)\cup \left( 2,+\infty \right)\)

Hướng dẫn giải

Điều kiện xác định của hàm số: 2{{x}^{2}}-x-6\ne 0\Leftrightarrow \left[ \begin{matrix}

x\ne 2 \\

x\ne \frac{-3}{2} \\

\end{matrix} \right.\Rightarrow D=\mathbb{R}\backslash \left\{ \frac{-3}{2},2 \right\}\(2{{x}^{2}}-x-6\ne 0\Leftrightarrow \left[ \begin{matrix} x\ne 2 \\ x\ne \frac{-3}{2} \\ \end{matrix} \right.\Rightarrow D=\mathbb{R}\backslash \left\{ \frac{-3}{2},2 \right\}\)

Chọn đáp án C

Ví dụ 3: Tìm tập xác định của hàm số: y={{\left( 1-x \right)}^{\frac{1}{2}}}\(y={{\left( 1-x \right)}^{\frac{1}{2}}}\)

A. D=\mathbb{R}\backslash \left\{ 1 \right\}\(A. D=\mathbb{R}\backslash \left\{ 1 \right\}\) B. D=\mathbb{R}\backslash \left( -\infty ,1 \right)\(B. D=\mathbb{R}\backslash \left( -\infty ,1 \right)\)
C. D=\mathbb{R}\(C. D=\mathbb{R}\) D. D=\mathbb{R}\backslash \left( 1,+\infty \right)\(D. D=\mathbb{R}\backslash \left( 1,+\infty \right)\)

Hướng dẫn giải

y={{\left( 1-x \right)}^{\frac{1}{2}}}=\sqrt{1-x}\(y={{\left( 1-x \right)}^{\frac{1}{2}}}=\sqrt{1-x}\)

Điều kiện xác định của hàm số: 1-x\ge 0\Rightarrow x\le 1\Rightarrow D=\mathbb{R}\backslash \left( 1,+\infty \right)\(1-x\ge 0\Rightarrow x\le 1\Rightarrow D=\mathbb{R}\backslash \left( 1,+\infty \right)\)

Chọn đáp án D

B. Tìm tập xác định của hàm số logarit

Hàm số logarit

Cho số thực: \left\{ \begin{matrix}
a > 0 \\
a \neq 1 \\
\end{matrix} \right.\(\left\{ \begin{matrix} a > 0 \\ a \neq 1 \\ \end{matrix} \right.\) . Hàm số y =
log_{a}x\(y = log_{a}x\) được gọi là hàm số logarit cơ số a.

Cách tìm tập xác định hàm logarit

- Hàm số y = \log_{a}x,(0 < a \neq1)\(y = \log_{a}x,(0 < a \neq1)\)có tập xác định là D = (0; +
\infty)\(D = (0; + \infty)\)

=> log_{a}x\mathbb{\in R}\(log_{a}x\mathbb{\in R}\)

=> Hàm số y = \log_{a}x,(0 < a \neq1)\(y = \log_{a}x,(0 < a \neq1)\) có tập giá trị là T\mathbb{=
R}\(T\mathbb{= R}\)

- Hàm số y = \log_{a}\left\lbrack P(x)\right\rbrack\(y = \log_{a}\left\lbrack P(x)\right\rbrack\)có điều kiện P(x) > 0

Nếu a chứa biến x thì ta bổ sung thêm điều kiện 0 < a \neq 1\(0 < a \neq 1\)

- Đặc biệt y = \log_{a}\left\lbrack P(x)\right\rbrack^{n}\(y = \log_{a}\left\lbrack P(x)\right\rbrack^{n}\) có điều kiện

  • P(x) > 0 nếu n lẻ
  • P(x) ≠ 0 nếu n chẵn

Phương pháp:

+ Hàm số logarit y={{\log }_{a}}x\(y={{\log }_{a}}x\), (a > 0; a ≠ 1) có tập xác định D = (0; +∞)

+ Hàm số logarit y={{\log }_{a}}f\left( x \right)\(y={{\log }_{a}}f\left( x \right)\), (a > 0; a ≠ 1) có điều kiện xác định là: \left\{ \begin{matrix}

f\left( x \right)>0 \\

\exists f\left( x \right) \\

\end{matrix} \right.\(\left\{ \begin{matrix} f\left( x \right)>0 \\ \exists f\left( x \right) \\ \end{matrix} \right.\)

Ví dụ. Cho hàm số y = f(x) =\log_{3}\left( x^{2} - 4x - m + 1 \right)\(y = f(x) =\log_{3}\left( x^{2} - 4x - m + 1 \right)\) với m\(m\) là tham số. Tìm tất cả các giá trị thực của tham số m\(m\) để hàm số đã y = f(x)\(y = f(x)\) xác định với mọi x\mathbb{\in R}\(x\mathbb{\in R}\) ?

Hướng dẫn giải

Hàm số y = f(x) = \log_{3}\left( x^{2} -4x - m + 1 \right)\(y = f(x) = \log_{3}\left( x^{2} -4x - m + 1 \right)\) xác định với mọi x\mathbb{\in R}\(x\mathbb{\in R}\) khi và chỉ khi

x^{2} - 4x - m + 1 > 0;\forall
x\mathbb{\in R}\(x^{2} - 4x - m + 1 > 0;\forall x\mathbb{\in R}\)

\Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta\(\Leftrightarrow \left\{ \begin{matrix} a > 0 \\ \Delta' < 0 \\ \end{matrix} \right.\ \Leftrightarrow \left\{ \begin{matrix} 1 > 0 \\ 4 + m - 1 < 0 \\ \end{matrix} \right.\ \Leftrightarrow m < - 3\)

Vậy m \in ( - \infty; - 3)\(m \in ( - \infty; - 3)\)

Ví dụ: Tìm điều kiện xác định của hàm số y= f(x) = \frac{1}{\log_{2}x - 1}\(y= f(x) = \frac{1}{\log_{2}x - 1}\)?

Hướng dẫn giải

Điều kiện xác định của hàm số y = f(x) =\frac{1}{\log_{2}x - 1}\(y = f(x) =\frac{1}{\log_{2}x - 1}\) là:

\left\{ \begin{matrix}
x > 0 \\
\log_{2}x - 1 \neq 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x > 0 \\
\log_{2}x \neq 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x > 0 \\
x \neq 2 \\
\end{matrix} \right.\(\left\{ \begin{matrix} x > 0 \\ \log_{2}x - 1 \neq 0 \\ \end{matrix} \right.\ \Leftrightarrow \left\{ \begin{matrix} x > 0 \\ \log_{2}x \neq 1 \\ \end{matrix} \right.\ \Leftrightarrow \left\{ \begin{matrix} x > 0 \\ x \neq 2 \\ \end{matrix} \right.\)

Vậy tập xác định của hàm số đã cho là D =
(0; + \infty)\backslash\left\{ 2 \right\}\(D = (0; + \infty)\backslash\left\{ 2 \right\}\) .

Ví dụ: Cho hàm số y = f(x) = \log_{2}\left(x^{2} - 2x + 2022 - a \right)\(y = f(x) = \log_{2}\left(x^{2} - 2x + 2022 - a \right)\) với a\(a\) là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số a\(a\) để hàm số đã y = f(x)\(y = f(x)\) xác định với mọi x\mathbb{\in R}\(x\mathbb{\in R}\) ?

Hướng dẫn giải

Hàm số y = f(x) = \log_{2}\left( x^{2} -2x + 2022 - a \right)\(y = f(x) = \log_{2}\left( x^{2} -2x + 2022 - a \right)\) xác định với mọi x\mathbb{\in R}\(x\mathbb{\in R}\) khi và chỉ khi

x^{2} - 2x + 2022 - a > 0;\forall
x\mathbb{\in R}\(x^{2} - 2x + 2022 - a > 0;\forall x\mathbb{\in R}\)

\Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta\(\Leftrightarrow \left\{ \begin{matrix} a > 0 \\ \Delta' < 0 \\ \end{matrix} \right.\ \Leftrightarrow \left\{ \begin{matrix} 1 > 0 \\ 1 - (2022 - a) < 0 \\ \end{matrix} \right.\ \Leftrightarrow a < 2021\)

a \in \mathbb{Z}^{+}\(a \in \mathbb{Z}^{+}\)

Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.

Ví dụ 1: Tìm tập xác định của hàm số: y={{\log }_{2}}\left( \sqrt{x}-2 \right)\(y={{\log }_{2}}\left( \sqrt{x}-2 \right)\)

A. D=\left( 1,+\infty \right)\(A. D=\left( 1,+\infty \right)\) B. D=\mathbb{R}\backslash \left\{ 0 \right\}\(B. D=\mathbb{R}\backslash \left\{ 0 \right\}\)
C. D=\mathbb{R}\(C. D=\mathbb{R}\) D. D=\mathbb{R}\backslash \left( -\infty ,0 \right)\(D. D=\mathbb{R}\backslash \left( -\infty ,0 \right)\)

Hướng dẫn giải:

Điều kiện xác định của hàm số là:\left\{ \begin{matrix}

\sqrt{x}-2>0 \\

x\ge 0 \\

\end{matrix} \right.\Rightarrow x>1\Rightarrow D=\left( 1,+\infty \right)\(\left\{ \begin{matrix} \sqrt{x}-2>0 \\ x\ge 0 \\ \end{matrix} \right.\Rightarrow x>1\Rightarrow D=\left( 1,+\infty \right)\)

Chọn đáp án A

Ví dụ 2: Tìm tập xác định của hàm số: y={{\log }_{3}}\left( {{2}^{2x}}-1 \right)\(y={{\log }_{3}}\left( {{2}^{2x}}-1 \right)\)

A. D = (1; +∞) B. D = \mathbb{R}\(\mathbb{R}\)\{0}
C. D = (-∞; 1) D = \mathbb{R}\(\mathbb{R}\)\(-∞; 0)

Hướng dẫn giải

Điều kiện xác định của hàm số: {{2}^{2x}}-1>0\Rightarrow x>0\Rightarrow D=\left( 0,+\infty \right)\({{2}^{2x}}-1>0\Rightarrow x>0\Rightarrow D=\left( 0,+\infty \right)\)

Chọn đáp án D

Ví dụ 3: Tìm điều kiện xác định của hàm số: y={{\log }_{2}}\left( {{x}^{2}}-5x+6 \right)\(y={{\log }_{2}}\left( {{x}^{2}}-5x+6 \right)\)

A. x ∈ (-∞; -2] ∪ [-3; +∞) B. x ∈ (-∞; 2] ∪ [3; +∞)
C. x ∈ [2; 3] D. x ∈ (-∞; +∞)

Hướng dẫn giải

Điều kiện xác định của hàm số: {{x}^{2}}-5x+6>0\Rightarrow x\in \left( -\infty ,2 \right)\cup \left( 3,+\infty \right)\({{x}^{2}}-5x+6>0\Rightarrow x\in \left( -\infty ,2 \right)\cup \left( 3,+\infty \right)\)

Chọn đáp án B

Ví dụ 4: Tìm tập xác định của hàm số: y={{\log }_{2}}{{\left( x+1 \right)}^{2}}-\ln \left( 3-x \right)+1\(y={{\log }_{2}}{{\left( x+1 \right)}^{2}}-\ln \left( 3-x \right)+1\)

A. D=\left( 3,+\infty \right)\(A. D=\left( 3,+\infty \right)\) B. D=\left( -\infty ,3 \right)\(B. D=\left( -\infty ,3 \right)\)
C. D=\left( -\infty ,3 \right)\backslash \left\{ -1 \right\}\(C. D=\left( -\infty ,3 \right)\backslash \left\{ -1 \right\}\) D. D=\left( 3,+\infty \right)\backslash \left\{ -1 \right\}\(D. D=\left( 3,+\infty \right)\backslash \left\{ -1 \right\}\)

Hướng dẫn giải

Điều kiện xác định của hàm số: \left\{ \begin{matrix}

{{\left( x+1 \right)}^{2}}>0 \\

3-x>0 \\

\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}

x\ne -1 \\

x<3 \\

\end{matrix} \right.\Rightarrow D=\left( -\infty ,3 \right)\backslash \left\{ -1 \right\}\(\left\{ \begin{matrix} {{\left( x+1 \right)}^{2}}>0 \\ 3-x>0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} x\ne -1 \\ x<3 \\ \end{matrix} \right.\Rightarrow D=\left( -\infty ,3 \right)\backslash \left\{ -1 \right\}\)

Chọn đáp án C

C. Bài tập tự luyện

Bài 1: Tìm tập xác định của hàm số: y=\sqrt{{{\log }_{\frac{1}{3}}}\left( x-3 \right)+2}\(y=\sqrt{{{\log }_{\frac{1}{3}}}\left( x-3 \right)+2}\)

A. D = (3; 12) B. D = [3; 12)
C. D = (3; 12] D. D = [3; 12]

Bài 2: Tìm tập xác định D của hàm số: y=\log \frac{x-2}{1-x}\(y=\log \frac{x-2}{1-x}\)

A. D=\left( 1,2 \right)\(A. D=\left( 1,2 \right)\) B. D=\mathbb{R}\backslash \left\{ 1 \right\}\(B. D=\mathbb{R}\backslash \left\{ 1 \right\}\)
C. D=\mathbb{R}\backslash \left\{ 1,2 \right\}\(C. D=\mathbb{R}\backslash \left\{ 1,2 \right\}\) D. D=\left( -\infty ,1 \right)\cup \left( 2,+\infty \right)\(D. D=\left( -\infty ,1 \right)\cup \left( 2,+\infty \right)\)

Bài 3: Tìm tập xác định của hàm số: y=\sqrt{3-{{\log }_{3}}\left( x+2 \right)}\(y=\sqrt{3-{{\log }_{3}}\left( x+2 \right)}\)

A. D = (-2; 27) B. D = (0; 25)
C. D = (-2; + ∞) D. (-2; 25]

Bài 4: Tìm tập xác định của hàm số: y={{\left( {{x}^{2}}-4 \right)}^{\frac{-2}{3}}}\(y={{\left( {{x}^{2}}-4 \right)}^{\frac{-2}{3}}}\)

A. D=\left( -\infty ,-2 \right)\cup \left( 2,+\infty \right)\(A. D=\left( -\infty ,-2 \right)\cup \left( 2,+\infty \right)\) B. D=\mathbb{R}\(B. D=\mathbb{R}\)
C. D=\left( -2,2 \right)\(C. D=\left( -2,2 \right)\) D. D=\mathbb{R}\backslash \left\{ \pm 2 \right\}\(D. D=\mathbb{R}\backslash \left\{ \pm 2 \right\}\)

Bài 5: Tìm tập xác định của hàm số: y=\sqrt[3]{{{x}^{2}}-3x+2}\(y=\sqrt[3]{{{x}^{2}}-3x+2}\)

A. D=\mathbb{R}\(A. D=\mathbb{R}\) B. D=\left( -\infty ,1 \right)\cup \left( 2,+\infty \right)\(B. D=\left( -\infty ,1 \right)\cup \left( 2,+\infty \right)\)
C. D=\left( 1,2 \right)\(C. D=\left( 1,2 \right)\) D. D=\left( -\infty ,1 \right]\cup \left[ 2,+\infty \right)\(D. D=\left( -\infty ,1 \right]\cup \left[ 2,+\infty \right)\)

D. Lịch thi THPT Quốc Gia 2023

Xem chi tiết lịch thi: Lịch thi THPT Quốc Gia 2023

-----------------------------------------------------------------------

Trên đây VnDoc đã chia sẻ đến các bạn học sinh Tìm tập xác định của Hàm số mũ Lũy thừa Logarit nhằm cung cấp cơ sở kiến thức ôn tập cho các bạn học sinh, giúp các bạn tiếp xúc với nhiều dạng bài về Hàm số. Hi vọng qua bài viết này bạn đọc có thể học tập tốt hơn môn Toán lớp 11 nhé. Chúc các bạn ôn tập thật tốt!

Mời các bạn tham khảo thêm một số tài liệu liên quan:

Chia sẻ, đánh giá bài viết
14
Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Toán 12

Xem thêm