Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Toán 8 Bài tập cuối chương 9

Lớp: Lớp 8
Môn: Toán
Dạng tài liệu: Giải bài tập
Bộ sách: Kết nối tri thức với cuộc sống
Loại File: PDF
Phân loại: Tài liệu Tính phí

Giải Toán 8 KNTT Bài tập cuối chương 9

Giải Toán 8 Bài tập cuối chương 9 hướng dẫn giải bài tập trong SGK Toán 8 Kết nối tri thức tập 2, giúp các em luyện giải Toán 8 và học tốt môn Toán hơn. Mời các em cùng tham khảo để nắm được nội dung bài học.

A. Trắc nghiệm

Bài 9.37

Cho ABC là tam giác không cân. Biết \Delta A\(\Delta A'B'C'\) ~ \Delta ABC\(\Delta ABC\). Khẳng định nào sau đây là đúng?

A. \Delta A\(\Delta A'C'B'\) ~ \Delta ACB\(\Delta ACB\)

B. \Delta B\(\Delta B'C'A'\) ~ \Delta BAC\(\Delta BAC\)

C. \Delta B\(\Delta B'A'C'\) ~ \Delta BCA\(\Delta BCA\)

D. \Delta A\(\Delta A'C'B'\) ~ \Delta ABC\(\Delta ABC\)

Đáp án: A

Bài 9.38

Cho \Delta A\(\Delta A'B'C'\) ~ \Delta ABC\(\Delta ABC\) với tỉ số đồng dạng bằng 2. Khẳng định nào sau đây là đúng

A. \frac{AB}{A\(\frac{AB}{A'B'}=2\)

B. \frac{AB}{A\(\frac{AB}{A'C'}=2\)

C. \frac{A\(\frac{A'B'}{AB}=2\)

D. \frac{A\(\frac{A'B'}{AC}=2\)

Đáp án: C

Bài 9.39

Trong các bộ ba số đo dưới đây, đâu là số đo ba cạnh của một tam giác vuông?

A. 3 m; 5 m; 6 m

B. 6 m; 8 m; 10 m

C. 1 cm; 0,5 cm; 1,25 cm

D. 9 m; 16 m; 25 m.

Đáp án: B

Bài 9.40

Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D. Điều nào dưới đây không suy ra \Delta ABC\(\Delta ABC\) ~ \Delta DEF\(\Delta DEF\).

A. \hat{B} =\hat{E}\(\hat{B} =\hat{E}\)

B. \hat{C} =\hat{F}\(\hat{C} =\hat{F}\)

C. \hat{B}+\hat{C} =\hat{E} + \hat{F}\(\hat{B}+\hat{C} =\hat{E} + \hat{F}\)

D. \hat{B}-\hat{C} =\hat{E} - \hat{F}\(\hat{B}-\hat{C} =\hat{E} - \hat{F}\)

Đáp án: D

B. Tự luận

Bài 9.41

Cho hình 9.73, biết rằng MN // AB, MP // AC. Hãy liệt kê ba cặp hai tam giác (khác nhau) đồng dạng có trong hình

Bài 9.41

Hướng dẫn giải

- \Delta CNM\(\Delta CNM\) ~ \Delta CAB\(\Delta CAB\) (vì MN // AB) (1)

- \Delta MPB\(\Delta MPB\) ~ \Delta CAB\(\Delta CAB\) (vì MP // AC) (2)

- Từ (1) và (2) => \Delta CNM\(\Delta CNM\) ~ \Delta MPB\(\Delta MPB\)

Bài 9.42

Cho hình 9.74, biết rằng \widehat{ABD}=\widehat{ACE}\(\widehat{ABD}=\widehat{ACE}\). Chứng minh rằng \Delta ABD\(\Delta ABD\) ~ \Delta ACE\(\Delta ACE\)\Delta BOE\(\Delta BOE\) ~ \Delta COD\(\Delta COD\)

Bài 9.42

Hướng dẫn giải

- Xét tam giác ABD và tam giác ACE có \widehat{ABD}=\widehat{ACE}\(\widehat{ABD}=\widehat{ACE}\), góc A chung

=> \Delta ABD\(\Delta ABD\) ~ \Delta ACE\(\Delta ACE\) (g.g)

- Vì \Delta ABD\(\Delta ABD\) ~ \Delta ACE\(\Delta ACE\)

=> \widehat{ADB}=\widehat{AEC}\(\widehat{ADB}=\widehat{AEC}\)

=> \widehat{CDO}=\widehat{BEO}\(\widehat{CDO}=\widehat{BEO}\) (1)

- Có \widehat{ABD}=\widehat{ACE}\(\widehat{ABD}=\widehat{ACE}\)

\widehat{ABD}+\widehat{EBO}=180\(\widehat{ABD}+\widehat{EBO}=180\)

\widehat{ACE}+\widehat{DCO}=180\(\widehat{ACE}+\widehat{DCO}=180\)

=> \widehat{EBO}=\widehat{DCO}\(\widehat{EBO}=\widehat{DCO}\) (2)

Từ (1) và (2) => \Delta BOE\(\Delta BOE\) ~ \Delta COD\(\Delta COD\) (g.g)

Bài 9.43

Hai đường trung tuyến BM, CN của tam giác ABC cắt nhau tại điểm G (H.9.75). Chứng minh rằng tam giác GMN đồng dạng với tam giác GBC và tìm tỉ số đồng dạng

Bài 9.43

Hướng dẫn giải

- Xét tam giác ABC có, NA=NB\(NA=NB\), MA=MC\(MA=MC\)

=> NM là đường trung bình của tam giác ABC

=> NM // BC, NM=\frac{1}{2}AB\(NM=\frac{1}{2}AB\)

- Xét tam giác GMN và tam giác GBC có NM // BC => \Delta GMN\(\Delta GMN\) ~ \Delta GBC\(\Delta GBC\)

Bài 9.44

Cho tam giác ABC vuông tại A có AB=5cm\(AB=5cm\), AC=4cm\(AC=4cm\). Gọi AH, HD lần lượt là các đường cao kẻ từ đỉnh A của tam giác ABC và đỉnh H của tam giác HAB

a) Chứng minh rằng \Delta HDA\(\Delta HDA\) ~ \Delta AHC\(\Delta AHC\)

b) Tính độ dài các đoạn thẳng HA, HB, HC, HD

Hướng dẫn giải

Bài 8.44

a) Có AB ⊥ AC, HD ⊥ AB

=> HD // AC

=>\widehat{DHA}=\widehat{HAC}\(\widehat{DHA}=\widehat{HAC}\)

- Xét tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \widehat{DHA}=\widehat{HAC}\(\widehat{DHA}=\widehat{HAC}\)

=> \Delta HDA\(\Delta HDA\) ~ \Delta AHC\(\Delta AHC\)

b) Xét tam giác ABC có: AB^{2}+AC^{2}=BC^{2}\(AB^{2}+AC^{2}=BC^{2}\)

AB=5cm\(AB=5cm\), AC=4cm\(AC=4cm\)

=> BC=\sqrt{41}\(BC=\sqrt{41}\)

- Có AH.BC=AB.AC\(AH.BC=AB.AC\)

=> AH=\frac{20\sqrt{41}}{41}\(AH=\frac{20\sqrt{41}}{41}\)

=> HB=AB^{2}-AH^{2}\(HB=AB^{2}-AH^{2}\) (áp dụng định lý Pythagore trong tam giác vuông BHA)

=> HB=\frac{25\sqrt{41}}{41}\(HB=\frac{25\sqrt{41}}{41}\)

=> HC=\frac{16\sqrt{41}}{41}\(HC=\frac{16\sqrt{41}}{41}\)

- Xét tam giác vuông BDH và tam giác vuông BAC có: HD // AC

=> \Delta BDH\(\Delta BDH\) ~ \Delta BAC\(\Delta BAC\)

=> \frac{BH}{BC}\(\frac{BH}{BC}\)=\frac{DH}{AC}\(\frac{DH}{AC}\)

=> HD=\frac{100}{41}\(HD=\frac{100}{41}\)

Bài 9.45

Cho tam giác ABC có đường cao AH. Biết AH=12cm\(AH=12cm\), CH=9cm\(CH=9cm\), BH=16cm\(BH=16cm\). Lấy M, N lần lượt là trung điểm của AH, BH

a) Chứng minh rằng ABC là tam giác vuông tại A

b) Chứng minh rằng MN ⊥ AC và CM ⊥ AN

c) Tính diện tích tam giác AMN

Bài 8.45

Hướng dẫn giải

a) Xét tam giác AHB vuông tại H, có:

AH^{2}+HB^{2}=AB^{2}\(AH^{2}+HB^{2}=AB^{2}\) (định lý Pythagore)

=> AB^{2}=12^{2}+16^{2}\(AB^{2}=12^{2}+16^{2}\)

=> AB=20cm\(AB=20cm\)

Tương tự, có: AC^{2}=AH^{2}+CH^{2}\(AC^{2}=AH^{2}+CH^{2}\) (áp dụng định lý Pythagore trong tam giác vuông AHC)

=> AC^{2}=12^{2}+9^{2}\(AC^{2}=12^{2}+9^{2}\)

=> AC=15cm\(AC=15cm\)

BC=9+16=25\(BC=9+16=25\)

Trong tam giác ABC, nhận thấy AB^{2}+AC^{2}=BC^{2}\(AB^{2}+AC^{2}=BC^{2}\)

=> Tam giác ABC vuông tại A

b) Xét tam giác AHB có:

M là trung điểm của AH

B là trung điểm của BH

=> MN là đường trung bình của tam giác AHB

=> MN // AB

mà AB ⊥ AC (vì tam giác ABC vuông tại A)

=> MN ⊥ AC

Bài 9.46

Cho tam giác ABC vuông tại A và các điểm D, E, F như Hình 9.77 sao cho AD là phân giác của góc BAC, DE và DF lần lượt vuông góc với AC và BC . Chứng minh rằng:

a)\frac{BD}{BC}=\frac{AB}{AB+AC}\(\frac{BD}{BC}=\frac{AB}{AB+AC}\), từ đó suy ra AE=\frac{AB.AC}{AB+AC}\(AE=\frac{AB.AC}{AB+AC}\)

b) \Delta DFC\(\Delta DFC\) ~ \Delta ABC\(\Delta ABC\)

c) DF=DB\(DF=DB\)

Bài 9.44

Bài 9.47

Để tính được chiều cao gần đúng của kim tự tháp Ai Cập, người ta nắm 1 cây cọc cao 1m vuông góc với mặt đất và đo được bóng cây cọc trên mặt đất là 1,5m. Khi đó chiều dài bóng của kim tự tháp trên mặt đất là 208,2 m. Hỏi kim tự tháp cao bao nhiêu mét?

Hướng dẫn giải:

Ta có hình vẽ:

Bài 9.47 trang 110 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Vì trong cùng một thời điểm, các tia nắng mặt trời tạo với mặt đất các góc bằng nhau

=> \widehat {BAC} = \widehat {B\(=> \widehat {BAC} = \widehat {B'A'C'}\)

- Xét hai tam giác vuông BAC (vuông tại B) và tam giác B'A'C' (vuông tại B') có: \widehat {BAC} = \widehat {B\(\widehat {BAC} = \widehat {B'A'C'}\)

=> ΔB\(=> ΔB'A'C' ∽ ΔBAC\)

=> \frac{{A\(=> \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}\)

=> \frac{1}{{AB}} = \frac{{1,5}}{{208,2}}\(=> \frac{1}{{AB}} = \frac{{1,5}}{{208,2}}\)

=> AB=138,8m\(=> AB=138,8m\)

Bài 9.48

Từ căn hộ chung cư nhà mình, bạn Lan đứng cách cửa sổ 1m nhìn sang tòa nhà đối diện thì vừa nhìn thấy đúng tất cả 6 tầng của tòa nhà đó. Biết rằng cửa sổ nhà Lan cao 80cm và mỗi tầng của tòa nhà đối diện 4m. Hỏi khoảng cách từ căn hộ nhà Lan đến tòa nhà đối diện là bao nhiêu?

Hướng dẫn giải:

Ta có hình vẽ

Bài 9.48 trang 110 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Có OE = 1m; AB = 0,8m; CD = 6.4 = 24m

Xét tam giác OAB và tam giác OCD có: AB // CD

=> ΔOAB ∽ ΔOCD

\begin{array}{l} \Rightarrow \frac{{OE}}{{OF}} = \frac{{AB}}{{C{\rm{D}}}}\\ \Rightarrow \frac{1}{{OF}} = \frac{{0,8}}{{24}}\end{array}\(\begin{array}{l} \Rightarrow \frac{{OE}}{{OF}} = \frac{{AB}}{{C{\rm{D}}}}\\ \Rightarrow \frac{1}{{OF}} = \frac{{0,8}}{{24}}\end{array}\)

=> OF=30(m)

=> EF=30−1=29m

Vậy khoảng cách từ căn hộ nhà Lan đến tòa nhà đối diện là 29m

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 8 Kết nối tri thức

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm