Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 8 Kết nối tri thức bài: Luyện tập chung trang 62

Giải Toán 8 Kết nối tri thức Luyện tập chung trang 62 tập 1 hướng dẫn trả lời câu hỏi trong SGK Toán 8 Kết nối tri thức trang 62, 63, giúp các em nắm vững kiến thức và luyện giải môn Toán lớp 8. Mời các em cùng tham khảo để nắm được nội dung bài học.

Bài tập 3.19 trang 63 sgk Toán 8 tập 1 KNTT:

Trong các tứ giác ở Hình 3.39, tứ giác nào là hình bình hành? Vì sao?

Giải Bài tập 3.19 trang 63 sgk Toán 8 tập 1 Kết nối

Hướng dẫn giải:

a) là hình bình hành vì có các cặp góc đối bằng nhau

b) Không là hình bình hành vì có cặp góc đối không bằng nhau

c) là hình bình hành vì có AD = BC, AD // BC

Bài tập 3.20 trang 63 sgk Toán 8 tập 1 KNTT:

Cho hình bình hành ABCD. Lấy điểm M thuộc cạnh AB và điểm N thuộc cạnh CD sao cho AM = CN. Chứng minh rằng:

a) AN = CM

b) \widehat{AMC}=\widehat{ANC}\(\widehat{AMC}=\widehat{ANC}\)

Hướng dẫn giải:

Giải Bài tập 3.20 trang 63 sgk Toán 8 tập 1 Kết nối

a) Ta có: AB//CD(hai cạnh đối trong hình bình hành ABCD)

mà M∈AB(gt)

và N∈CD(gt)

nên AM//CN

Xét tứ giác AMCN có AM//CN(cmt) và AM=CN(gt)

nên AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒  AN=MC(hai cạnh đối trong hình bình hành AMCN)

b)  AMCN là hình bình hành ⇒ \widehat{AMC}=\widehat{ANC}\(\widehat{AMC}=\widehat{ANC}\)

Bài tập 3.21 trang 63 sgk Toán 8 tập 1 KNTT: 

Vẽ tứ giác ABCD theo hướng dẫn sau:

Bước 1. Vẽ đoạn thẳng AB và đường thẳng a song song với AB

Bước 2. Lấy điểm $C\in a$

Bước 3. Trên a chọn D sao cho CD = AB và A, D nằm cùng phía đối với BC

Hãy giải thích tại sao tứ giác ABCD là hình bình hành

Hướng dẫn giải:

Giải Bài tập 3.21 trang 63 sgk Toán 8 tập 1 Kết nối

Xét tứ giác ABCD có:

AB = CD

AB // CD

do đó ABCD là hình bình hành

Bài tập 3.22 trang 63 sgk Toán 8 tập 1 KNTT:

Cho hình bình hành ABC có AB = 3 cm, AD = 5 cm

a) Hỏi tia phân giác của góc A cắt cạnh CD hay cạnh BC?

b) Tính khoảng cách từ giao điểm đó đến điểm C

Hướng dẫn giải:

Giải Bài tập 3.22 trang 63 sgk Toán 8 tập 1 Kết nối

a) Cắt cạnh BC

b)Gọi giao điểm của tia phân giác góc A và BC là K

Ta có: \widehat{BKA}=\widehat{DAK}\(\widehat{BKA}=\widehat{DAK}\) (so le trong)

\widehat{DAK}=\widehat{BAK}\(\widehat{DAK}=\widehat{BAK}\) (AK là tia phân giác \widehat{A}\(\widehat{A}\))

Suy ra \widehat{BAK}=\widehat{BKA}\Rightarrow $ BA\(\widehat{BAK}=\widehat{BKA}\Rightarrow $ BA\) là tam giác cân tại B \Rightarrow BA=BK =3cm\(\Rightarrow BA=BK =3cm\)

\Rightarrow CK=BC-BK=2cm\(\Rightarrow CK=BC-BK=2cm\)

Bài tập 3.23 trang 63 sgk Toán 8 tập 1 KNTT: 

Cho hình bình hành ABCD. Lấy điểm E sao cho B là trung điểm của AE, lấy điểm F sao cho C là trung điểm của DF. Chứng minh rằng:

a) Hai tứ giác AEFD, ABFC là những hình bình hành

b) Các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau

Hướng dẫn giải:

a) Ta có AE = 2AB; DF = 2 CD, AB = CD suy ra AE = DF

Xét tứ giác AEFD có AE = DF. AE//DF suy ra AEFD là hình bình hành

Ta có  FC = CD, AB = CD suy ra FC = AB

Xét tứ giác AEFD có FC = AB. FC//AB suy ra ABFC là hình bình hành

b) AEFD là hình bình hành suy ra trung điểm của AF và DE trùng nhau

ABFC  là hình bình hành suy ra trung điểm của AF và BC trùng nhau

Do đó các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau

Bài tập 3.24 trang 63 sgk Toán 8 tập 1 KNTT:

Cho ba điểm không thẳng hàng.

a) Tìm một điểm sao cho nó cùng với ba điểm đã cho là bốn đỉnh của một hình bình hành. Hãy vẽ hình và mô tả cách tìm

b) Hỏi tìm được bao nhiêu điểm như vậy

Hướng dẫn giải:

Giải Bài tập 3.24 trang 63 sgk Toán 8 tập 1 Kết nối

a) Gọi 3 điểm cho trước là Q, E, R

- Nối Q với E, ta được đoạn thẳng QE

- Qua R kẻ đường thẳng t // QE

- Trên t lấy điểm Y sao cho YR=QE

- Nối 4 điểm Q, E, R, Y lại với nhau ta được 1 hình bình hành

b) Tìm được 2 điểm

Chia sẻ, đánh giá bài viết
3
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
3 Bình luận
Sắp xếp theo
  • Đinh Đinh
    Đinh Đinh

    😍😍😍😍😍😍

    Thích Phản hồi 23/04/23
    • chang
      chang

      😘😘😘😘😘

      Thích Phản hồi 23/04/23
      • Thiên Bình
        Thiên Bình

        🤟🤟🤟🤟🤟🤟

        Thích Phản hồi 23/04/23
        🖼️

        Gợi ý cho bạn

        Xem thêm
        🖼️

        Toán 8 Kết nối tri thức

        Xem thêm