Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Khi đó, giá trị lớn nhất của hàm số g(x)
= f\left( 2 - x^{2} ight) trên \left\lbrack 0;\sqrt{2} ightbrack là:

    Hướng dẫn:

    Đặt t = 2 - x^{2};t' = - 2x \leq
0;\forall x \in \left\lbrack 0;\sqrt{2} ightbrack \Rightarrow t \in
\lbrack 0;2brack

    \Rightarrow \max_{\left\lbrack
0;\sqrt{2} ightbrack}g(x) = \max_{\lbrack 0;2brack}f(t) =
f(0)

  • Câu 2: Thông hiểu
    Ghi đáp án vào ô trống

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Đáp án là:

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Ta có:

    V(x) = (12 - 2x)^{2}.x \Leftrightarrow
V(x) = 4x^{3} - 48x^{2} + 144x

    \max V(x) = 128 tại x = 2\ dm

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng
    Xác định giá trị nhỏ nhất của hàm số

    Tìm giá trị nhỏ nhất m của hàm số f(x) = 2\cos^{3}x - \frac{9}{2}\cos^{2}x +3\cos x + \frac{1}{2}.

    Hướng dẫn:

    Đặt t = \cos x\ ( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị nhỏ nhất của hàm số g(t) = 2t^{3} - \frac{9}{2}t^{2} + 3t +\frac{1}{2} trên đoạn \lbrack -1;1brack''.

    Đạo hàm g'(t) = 6t^{2} - 9t +3

    \Rightarrow g'(t) = 0\Leftrightarrow \left\lbrack \begin{matrix}t = 1 \in \lbrack - 1;1brack \\t = \frac{1}{2} \in \lbrack - 1;1brack \\\end{matrix} ight.

    Ta có \left\{ \begin{matrix}g( - 1) = - 9 \\g\left( \dfrac{1}{2} ight) = \dfrac{9}{8} \\g(1) = 1 \\\end{matrix} ight. \Rightarrow\min_{\lbrack - 1;1brack}g(t) = g( - 1) = - 9

    \Rightarrow \min_{x\mathbb{\in R}}f(x) =- 9

  • Câu 5: Thông hiểu
    Chọn mệnh đề đúng

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 6: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Tìm giá trị nhỏ nhất m của hàm số f(x) = x^{2} + \frac{2}{x} trên khoảng (0; + \infty).

    Hướng dẫn:

    Ta có :

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2\left( x^{3} - 1 ight)}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy \min_{(0; + \infty)}f(x) = f(1) = 3.

  • Câu 7: Thông hiểu
    Tìm giá trị tham số m

    Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số y = x + \sqrt{4 - x^{2}} + m3\sqrt{2}?

    Hướng dẫn:

    Ta có: y = x + \sqrt{4 - x^{2}} +
m có tập xác định D = \lbrack -
2;2brack

    y' = 1 + \frac{- x}{\sqrt{4 -
x^{2}}};\forall x \in ( - 2;2)

    y' = 0 \Leftrightarrow 1 + \frac{-
x}{\sqrt{4 - x^{2}}} = 0 \Leftrightarrow \sqrt{4 - x^{2}} =
x

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
4 - x^{2} = x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Ta có: \left\{ \begin{matrix}
y(2) = 2 + m \\
y( - 2) = 2 + m \\
y\left( \sqrt{2} ight) = 2\sqrt{2} + m \\
\end{matrix} ight. . Theo bài ra ta có: 2\sqrt{2} + m = 3\sqrt{2} \Leftrightarrow m =
\sqrt{2}

    Vậy đáp án cần tìm là m =
\sqrt{2}

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x^{2} -3x+6}{x-1} trên đoạn [2,4]. Khi đó M + m bằng:

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu
    Xác định m để hàm số nghịch biến trên khoảng

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 11: Thông hiểu
    Chọn phương án thích hợp

    Giá trị nhỏ nhất của hàm số y = x - 5 +
\frac{1}{x} trên khoảng (0; +
\infty) bằng bao nhiêu?

    Hướng dẫn:

    Áp dụng bất đẳng thức Cô – si ta có:

    y = x + \frac{1}{x} - 5 \geq
2\sqrt{x.\frac{1}{x}} - 5 = - 3

    Dấu bằng xảy ra khi x = \frac{1}{x}
\Leftrightarrow x^{2} = 1 \Leftrightarrow x = 1 (vì x > 0).

    Vậy \min_{(0; + \infty)}y = -
3

  • Câu 12: Thông hiểu
    Giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2} là:

    Hướng dẫn:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Khi đó hàm số trở thành:

    f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}

    Xét hàm số f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2} trên đoạn \left[ { - 1;1} ight] ta có:

    f'\left( t ight) = 8{t^2} - 9t + 3 > 0;\forall t \in \left[ { - 1;1} ight]

    => Hàm số f(t) đồng biến trên \left( { - 1;1} ight)

    => \mathop {\min f\left( t ight)}\limits_{\left[ { - 1;1} ight]}  = f\left( { - 1} ight) = 1

  • Câu 13: Vận dụng
    Tính tổng các giá trị của tham số m

    Tổng các giá trị nguyên âm của tham số m để hàm số y
= x^{3} + mx - \frac{1}{5x^{5}} đồng biến trên khoảng (0; + \infty) bằng:

    Hướng dẫn:

    Hàm số đồng biến trên khoảng (0; +
\infty)

    \Leftrightarrow y' = 3x^{2} + m +
\frac{1}{x^{6}} \geq 0;\forall x \in (0; + \infty)

    Theo bất đẳng thức Cauchy ta có:

    \Leftrightarrow y' = 3x^{2} +
\frac{1}{x^{6}} + m = \left( x^{2} + x^{2} + x^{2} + \frac{1}{x^{6}}
ight) + m

    \geq
4\sqrt[4]{x^{2}.x^{2}.x^{2}.\frac{1}{x^{6}}} = 4 + m;\forall x \in (0; +
\infty)

    (*) \Leftrightarrow m + 4 \geq 0
\Leftrightarrow m \geq - 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3; - 2; - 1 ight\}

    Vậy tổng các giá trị của tham số m là -
10.

  • Câu 14: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích 1800m^{3} và chiều sâu 2m (như hình vẽ).

    Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.

    Xét tính đúng sai của các khẳng định sau:

    a) Thể tích bể chứa được tính theo công thức V = 2x^{2}y . Sai|| Đúng

    b) Mối liên hệ giữa x và y là y =
\frac{900}{x} . Đúng||Sai

    c) Tổng diện tích mặt bên của bể tính theo x, y là S = 4(x + y) . Đúng||Sai

    d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là 40m . Sai|| Đúng

    Đáp án là:

    Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích 1800m^{3} và chiều sâu 2m (như hình vẽ).

    Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.

    Xét tính đúng sai của các khẳng định sau:

    a) Thể tích bể chứa được tính theo công thức V = 2x^{2}y . Sai|| Đúng

    b) Mối liên hệ giữa x và y là y =
\frac{900}{x} . Đúng||Sai

    c) Tổng diện tích mặt bên của bể tính theo x, y là S = 4(x + y) . Đúng||Sai

    d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là 40m . Sai|| Đúng

    a) Thể tích của bể là V = B.h = xy.\
h.

    b) Với V = xy.h \Rightarrow 1800 = xy.2
\Rightarrow xy = \frac{1800}{2} = 900.

    c) Tổng diện tích mặt bên gồm 4 hình chữ nhật (trước, sau, trái, phải) là:

    \ S = 2x + 2x + 2y + 2y = 4x + 4y = 4(x
+ y)

    d) Tổng diện tích của bể là: 4x + 4y + xy
= 4x + 4.\frac{900}{x} + 900

    Vì chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể nên chi phí cần có là 4x +
4.\frac{900}{x} + 2.900

    Đặt f(x) = 4x + 4.\frac{900}{x} +
1800 ta có: f'(x) = 4 -
\frac{3600}{x^{2}} \Rightarrow f'(x) = 0 \Leftrightarrow x =
30 ta có bảng biến thiên như sau:

    Với x = 30m;y = 30 m và thì chi phí xây dựng bể là thấp nhất.

  • Câu 15: Thông hiểu
    Tìm số phần từ của tập hợp S

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để hàm số y = \frac{\cos x + m^{2}}{2 - \cos
x} có giá trị lớn nhất trên \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack bằng 1. Số phần tử của tập hợp S:

    Hướng dẫn:

    Ta có: y = \frac{\cos x + m^{2}}{2 - \cos
x};\forall x \in \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack

    Đặt t = \cos x;(0 \leq t \leq
1)

    Hàm số đã cho trở thành: f(t) = \frac{t +
m^{2}}{2 - t};\forall t \in \lbrack 0;1brack

    Ta có: f'(t) = \frac{2 + m^{2}}{(2 -
t)^{2}} > 0;\forall t \in \lbrack 0;1brack

    \Rightarrow \underset{\left\lbrack -
\frac{\pi}{2};\frac{\pi}{3} ightbrack}{\max y} = f(1) = m^{2} + 1 =
1 \Leftrightarrow m = 0

    Vậy số phần tử của tập hợp S là 1.

  • Câu 16: Thông hiểu
    Ghi đáp án vào ô trống

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

     Dựa vào bảng biến thiên trên \lbrack -
5;7) , ta có: \underset{\lbrack -
5;7)}{Min}f(x) = f(1) = 2 .

  • Câu 18: Thông hiểu
    Xác định số giá trị nguyên của m

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 10;10brack để hàm số y = x^{3} - 3x^{2} + 3mx + 2020 nghịch biến trên khoảng (1;2)?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x + 3m \leq
0;\forall x \in (1;2)

    \Leftrightarrow m \leq - x^{2} +
2x;\forall x \in (1;2)

    Xét f(x) = - x^{2} + 2x trên khoảng (1;2) ta có bảng biến thiên:

    Suy ra m \leq 0m \in \lbrack - 10;10brack nên m \in \left\{ - 10; - 9;...; - 1;0
ight\}

    Vậy có tất cả 11 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 19: Thông hiểu
    Tìm giá trị lớn nhất nhỏ nhất của hàm số

    Cho hàm số f(x) = \frac{2x^{2} + x + 1}{x
+ 1}. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn \lbrack 0;1brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{2x^{2} + 4x}{(x+ 1)^2}.

    Ta có \left\{ \begin{matrix}
f'(x) \geq 0,\ \forall x \in \lbrack 0;1brack \\
f'(x) = 0 \Leftrightarrow x = 0 \\
\end{matrix} ight..

    Suy ra hàm số f(x) đồng biến trên đoạn \lbrack 0;1brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;1brack}f(x) = f(1) = 2 \\
m = \min_{\lbrack 0;1brack}f(x) = f(0) = 1 \\
\end{matrix} ight.

  • Câu 20: Thông hiểu
    Xác định vận tốc của chuyển động

    Vận tốc của một chất điểm được xác định bởi công thức v(t) = t^{3} - 10t^{2} + 29t - 20 (với v được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:

    Hướng dẫn:

    Gia tốc của chất điểm a(t) = v'(t) =
3t^{2} - 20t + 29 gia tốc là hàm số bậc hai ẩn t đạt giá trị nhỏ nhất tại t = \frac{10}{3}

    Tại đó, vận tốc của chất điểm bằng v\left( \frac{10}{3} ight) = \frac{70}{27}
\approx 2,59.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo