Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

    Cho hàm số f(x) có đạo hàm f’(x). Đồ thị của hàm số y = f’(x) được biểu diễn trong hình vẽ dưới đây.

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

    Biết rằng f\left( 0 ight) + f\left( 1 ight) + f\left( 3 ight) = f\left( 4 ight) + 2f\left( 2 ight). Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số f(x) trên đoạn [0; 4]?

    Hướng dẫn:

    Ta có bảng xét dấu như sau:

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

    Dựa vào bảng xét dấy ta có M = f(2), GTNN chỉ có thể là f(0) hoặc f(4)

    Ta lại có

    f(1) và f(3) nhỏ hơn f(2) => f(1) + f(3) < 2f(2)

    => 2f(2) – f(1) – f(3) > 0

    Theo bài ra ta có:

    f(0) + f(1) + f(3) = f(4) + 2f(2)

    => f(0) – f(4) = 2f(2) – f(1) – f(3) > 0

    => f(0) – f(4) > 0 => f(0) > f(4)

    => GTNN đạt được tại x = 4

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= x^{3} - 3x^{2} + (4 - m)x đồng biến trên khoảng (2; + \infty) là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x + 4 -
m

    Hàm số đồng biến trên khoảng (2; +
\infty) \Leftrightarrow y' \geq 0;\forall x \in (2; +
\infty)

    \Leftrightarrow m \leq 3x^{2} - 6x +
4;\forall x \in (2; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
4 trên khoảng (2; +
\infty).

    Ta có: g'(x) = 6x - 6;g'(x) = 0
\Leftrightarrow x = 1

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có: m \leq
g(x);;\forall x \in (2; + \infty) \Leftrightarrow m \leq 4

    Vậy m \leq 4 thỏa mãn yêu cầu bài toán.

  • Câu 3: Thông hiểu
    Ghi đáp án vào ô trống

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu
    Chọn đáp án thích hợp

    Đợt xuất khẩu gạo của tính B kéo dài trong 20 ngày. Người ta nhận thấy có lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^{3} - 24t^{2} + 144t +
2500. Hỏi trong mấy ngày đó, ngày thứ mấy có số lượng xuất khẩu gạo cao nhất?

    Gợi ý:

    Khảo sát hàm số, tìm giá trị lớn nhất của S(t).

    Từ đó kết luận ngày xuất khẩu gạo cao nhất.

    Hướng dẫn:

    Xét hàm số S(t) = t^{3} - 24t^{2} + 144t
+ 2500 với 1 \leq t \leq
20.

    Ta có: S^{'}(t) = 3t^{2} - 48t +
144

    S^{'}(t) = 0 \Rightarrow 3t^{2} -
48t + 144 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 4 \in \lbrack 1;20brack \\
t = 12 \in \lbrack 1;20brack \\
\end{matrix} ight.

    Lại có: S(1) = 2621;S(4) = 2756;S(12) =
2500;S(20) = 3780.

    Do đó: \max_{\lbrack 1;20brack}S(t) =
S(20) = 3780.

    Vậy ngày thứ 20 là ngày có số lượng gạo xuất khẩu cao nhất.

  • Câu 5: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số chứa căn

    Tìm giá trị nhỏ nhất m của hàm số f(x) = x + \sqrt{2 - x^2}.

    Hướng dẫn:

    TXĐ: D = \left\lbrack - \sqrt{2};\sqrt{2}
ightbrack.

    Đạo hàm f'(x) = 1 - \frac{x}{\sqrt{2
- x^{2}}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \frac{x}{\sqrt{2 - x^{2}}} = 1

    \Leftrightarrow \sqrt{2 - x^{2}} = x
\Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
2 - x^{2} = x^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 1 \in \left\lbrack -
\sqrt{2};\sqrt{2} ightbrack

    Ta có \left\{ \begin{matrix}
f\left( - \sqrt{2} ight) = - \sqrt{2} \\
f(1) = 2 \\
f\left( \sqrt{2} ight) = \sqrt{2} \\
\end{matrix} ight.\  \Rightarrow m = - \sqrt{2}

  • Câu 6: Thông hiểu
    Tính Min, Max của hàm số

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:

    Hướng dẫn:

    Tập xác định D = \left[ {1;9} ight]

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{2\sqrt {9 - x} }} \hfill \\  y' = 0 \Rightarrow \sqrt {x - 1}  = \sqrt {9 - x}  \Rightarrow x = 5\left( {tm} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = y\left( 9 ight) = 2\sqrt 2 } \\   {y\left( 5 ight) = 4} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\min y = 2\sqrt 2 } \\   {\max y = 4} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu
    Chọn đáp án đúng:

    Xét hàm số y = f(x) = x + 1 - \frac{3}{x+2} trên đoạn [-1;1]. Mệnh đề nào sau đây đúng?

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá cho thuê mỗi căn là 3000000 đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm 200000 đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?

    Hướng dẫn:

    Đặt số tiền tăng thêm là 200000x (đồng)

    Giá tiền mỗi căn hộ một tháng là 3000000 + 200000x (đồng)

    Số căn hộ bị trống là 50 - 2x (phòng)

    Số tiền thu được mỗi tháng là: \left(
3.10^{6} + 2.10^{5}x ight)(50 - 2x) (đồng)

    Đặt f(x) = \left( 3.10^{6} + 2.10^{5}x
ight)(50 - 2x)

    Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số f(x), giá trị lớn nhất của hàm số f(x) tại đỉnh của parabol.

    Hay:

    f'(x) = 2.10^{5}(50 - 2x) - 2\left(
3.10^{6} + 2.10^{5}x ight) = 0 \Leftrightarrow x = 5

    Vậy công ty niêm yết giá tiền là: 3.10^{6} + 2.10^{5}.5 = 4.10^{6} đồng để được doanh thu là lớn nhất.

  • Câu 9: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) = \frac{\sqrt{x^{2} -
1}}{x - 2} với x thuộc D = ( - \infty;\  - 1\rbrack \cup
\left\lbrack 1;\ \frac{3}{2} \right\rbrack. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Hàm số xác định và liên tục trên D = ( -
\infty;\  - 1brack \cup \left\lbrack 1;\ \frac{3}{2}
ightbrack.

    f'(x) = \frac{- 2x + 1}{(x -
2)^{2}\sqrt{x^{2} - 1}}; f'(x)
= 0 \Leftrightarrow x = \frac{1}{2} otin D

    Vậy \max_{D}f(x) = 0; \min_{D}f(x) = -\sqrt{5}.

  • Câu 10: Vận dụng
    Xét tính đúng sai của các mệnh đề sau

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3brack như hình.

    Các mệnh đề sau đúng hay sai?

    a) [NB] Trên \lbrack -
1;3brack hàm số y = f(x)2 điểm cực trị. Đúng||Sai

    b) [TH] Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack6. Sai|||Đúng

    c) [TH] Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brackbằng 6. Đúng||Sai

    d) [VD] Hàm số g(x) = f(4 - x) có đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack 1;3brack lần lượt bằng a\ và\ b. Khi đó giá trị của a^{2} + b^{2} = 53. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3brack như hình.

    Các mệnh đề sau đúng hay sai?

    a) [NB] Trên \lbrack -
1;3brack hàm số y = f(x)2 điểm cực trị. Đúng||Sai

    b) [TH] Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack6. Sai|||Đúng

    c) [TH] Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brackbằng 6. Đúng||Sai

    d) [VD] Hàm số g(x) = f(4 - x) có đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack 1;3brack lần lượt bằng a\ và\ b. Khi đó giá trị của a^{2} + b^{2} = 53. Đúng||Sai

    a) Đúng.

    Trên \lbrack -
1;3brack hàm số y = f(x) đạt cực trị tại x\  = \ 0;\ x\  = \
2.

    b) Sai.

    Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack7 khi x = 3. Mệnh đề sai.

    c) Đúng.

    Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brack bằng - 1 + 7\  = 6. Mệnh đề đúng.

    d) Đúng.

    Xét Hàm số g(x) = f(4 -
x) trên đoạn \lbrack
1;3brack.

    Ta có g'(x) = - f'(4 -
x)

    g'(x) = 0 \Leftrightarrow f'(4 -
x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
4 - x = 0 \\
4 - x = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 4 otin \lbrack 1;3brack \\
x = 2 \in \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có;

    g(1) = f(3) = 7;g(2) = f(2) = 2;2 <
g(3) = f(1) < 7

    Do đó y = g(x) đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3brack bằng 27.

    Hay a = 2,b = 7. Khi đó giá trị của a^{2} + b^{2} = 53. Mệnh đề đúng.

  • Câu 11: Thông hiểu
    Ghi đáp án vào ô trống

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Giá trị lớn nhất của hàm số f(x) = x^{3}
- 3x^{2} - 9x + 10 trên đoạn \lbrack - 2;2brack bằng

    Hướng dẫn:

    Xét hàm số f(x) = x^{3} - 3x^{2} - 9x +
10 trên đoạn \lbrack -
2;2brack

    \Rightarrow f'(x) = 3x^{2} - 6x -
9.

    f^{'(x)} = 0 \Leftrightarrow 3x^{2}
- 6x - 9 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \in \lbrack - 2;2brack \\
x = 3 otin \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có:

    f( - 2) = 8;f( - 1) = 15;f(2) = -
12.

    Vậy giá trị lớn nhất của hàm số f(x) =
x^{3} - 3x^{2} - 9x + 10 trên đoạn \lbrack - 2;2brack bằng 15.

  • Câu 13: Thông hiểu
    Tìm m thỏa mãn biểu thức

    Biết rằng \min_{\lbrack -
3;0brack}\left( - \frac{1}{3}x^{3} + x^{2} - x + m ight) =
2. Định giá trị tham số m?

    Hướng dẫn:

    Xét hàm số y = - \frac{1}{3}x^{3} + x^{2}
- x + m trên \lbrack -
3;0brack

    Hàm số liên tục trên \lbrack -
3;0brack

    Ta có: f'(x) = - x^{2} + 2x - 1 = -
(x - 1)^{2} < 0\forall x \in \lbrack - 3;0brack

    Do đó hàm số nghịch biến trên khoảng ( -
3;0)

    \Rightarrow \min_{\lbrack -
3;0brack}f(x) = f(0) = m \Rightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 14: Vận dụng
    Tính tổng các giá trị của tham số m

    Tổng các giá trị nguyên âm của tham số m để hàm số y
= x^{3} + mx - \frac{1}{5x^{5}} đồng biến trên khoảng (0; + \infty) bằng:

    Hướng dẫn:

    Hàm số đồng biến trên khoảng (0; +
\infty)

    \Leftrightarrow y' = 3x^{2} + m +
\frac{1}{x^{6}} \geq 0;\forall x \in (0; + \infty)

    Theo bất đẳng thức Cauchy ta có:

    \Leftrightarrow y' = 3x^{2} +
\frac{1}{x^{6}} + m = \left( x^{2} + x^{2} + x^{2} + \frac{1}{x^{6}}
ight) + m

    \geq
4\sqrt[4]{x^{2}.x^{2}.x^{2}.\frac{1}{x^{6}}} = 4 + m;\forall x \in (0; +
\infty)

    (*) \Leftrightarrow m + 4 \geq 0
\Leftrightarrow m \geq - 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3; - 2; - 1 ight\}

    Vậy tổng các giá trị của tham số m là -
10.

  • Câu 15: Thông hiểu
    Giá trị nhỏ nhất của hàm số

    Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

    Giá trị nhỏ nhất của hàm số

    Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    \begin{matrix}  f\left( x ight) \geqslant f\left( { - 4} ight),\forall x \in \left( { - \infty ;0} ight] \hfill \\  f\left( x ight) \geqslant f\left( 8 ight),\forall x \in \left( { - \infty ;0} ight) \hfill \\ \end{matrix}

    Mặt khác f(-4) > f(8) => \forall x \in \left( { - \infty ; + \infty } ight) thì f\left( x ight) \geqslant f\left( 8 ight)

    Vậy \mathop {\min }\limits_\mathbb{R} f\left( x ight) = f\left( 8 ight)

  • Câu 16: Thông hiểu
    Tính tổng min max của hàm số trên đoạn cho trước

    Cho hàm số y = f(x) liên tục và có đồ thị trên đoạn \lbrack - 2;\
4brack như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên đoạn \lbrack - 2;\ 4brack bằng

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta có

    m = \underset{x \in \lbrack - 2\ ;\
4brack}{Min}f(x) = - 4, M =
\underset{x \in \lbrack - 2\ ;\ 4brack}{Max}f(x) = 7

    Khi đó M + m = 3

  • Câu 17: Thông hiểu
    Giá trị của biểu thức M - 2m

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x\sqrt {1 - {x^2}}. Giá trị của biểu thức M - 2m là:

    Hướng dẫn:

    Điều kiện xác định: 1 - {x^2} \geqslant 0 \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = x\sqrt {1 - {x^2}} trên \left[ { - 1;1} ight] ta có:

    f'\left( x ight) = \sqrt {1 - {x^2}}  - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }}

    Phương trình f'\left( x ight) = 0

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 < x < 1} \\   {1 - 2{x^2} = 0} \end{array} \Rightarrow x \in \left\{ { - \frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} ight\}} ight.

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = 0} \\   {f\left( {\dfrac{{ - \sqrt 2 }}{2}} ight) =  - \dfrac{1}{2}} \\   {f\left( {\dfrac{{\sqrt 2 }}{2}} ight) = \dfrac{1}{2}} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\max f\left( x ight)}\limits_{\left[ { - 1;1} ight]}  = M = \dfrac{1}{2}} \\   {\mathop {\min f\left( x ight)}\limits_{\left[ { - 1;1} ight]}  = m = \dfrac{1}{2}} \end{array}} ight.

    => M - 2m = \frac{1}{2} - 2\left( { - \frac{1}{2}} ight) = \frac{3}{2}

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) có bảng biến thiên như sau:

    a) \max_{x\mathbb{\in R}}f(x) =
5. Đúng||Sai

    b) \min_{x\mathbb{\in R}}f(x) =
2. Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbrack là 7. Đúng||Sai

    d) \max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 5. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên như sau:

    a) \max_{x\mathbb{\in R}}f(x) =
5. Đúng||Sai

    b) \min_{x\mathbb{\in R}}f(x) =
2. Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbrack là 7. Đúng||Sai

    d) \max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 5. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Trên \mathbb{R}, hàm số có giá trị lớn nhất bằng 5.

    b) Trên \mathbb{R}, hàm số không có giá trị nhỏ nhất.

    c) Trên \lbrack - 1;1\rbrack, hàm số có giá trị lớn nhất bằng 5, giá trị nhỏ nhất bằng 2.

    Do đó tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbracklà 7

    d) Ta có: \forall x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack:\ \sin x \in \lbrack
0;1\rbrack\overset{}{\rightarrow}\max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 3.

  • Câu 19: Thông hiểu
    Tìm GTLN của hàm số f(x)

    Giá trị lớn nhất của hàm số y =  - {x^3} + 3x + 1 trên khoảng \left( {0; + \infty } ight)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {tm} ight)} \\   {x =  - 1\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1

  • Câu 20: Vận dụng
    Xét tính đúng sai của các nhận định

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    Đáp án là:

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    Gọi số tiền cần tăng giá mỗi chiếc khăn là x .

    Vì cứ tăng giá thêm 1 thì số khăn bán ra giảm 100 chiếc nên tăng x thì số khăn bán ra giảm 100x chiếc.

    Do đó tổng số khăn bán ra mỗi tháng là: 3000 - 100x chiếc.

    Lúc đầu bán với giá 30, mỗi chiếc khăn có lãi 12. Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: 12 +
x.

    Do đó tổng số lợi nhuận một tháng thu được sau khi tăng giá là:

    f(x) = (3000 - 100x)(12 +
x).

    Xét hàm số f(x) = (3000 - 100x)(12 +
x) trên (0; + \infty).

    Ta có:f(x) = - 100x^{2} + 1800x +
36000.

    f'(x) = - 200x + 1800

    f'(x) = 0 \Leftrightarrow - 200x +
1800 = 0 \Leftrightarrow x = 9

    Lập bảng biến thiên của hàm số f(x) trên (0;\  + \infty) ta thấy hàm số đạt giá trị lớn nhất khix = 9

    hư vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất cần tăng giá bán mỗi chiếc khăn là 9.000 đồng, tức là mỗi chiếc khăn bán với giá mới là39.000 đồng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo