Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 8 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm số thực m thỏa mãn điều kiện

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{u} = (2; - 1;1)\overrightarrow{v} = (0; - 3; - m). Tìm số thực m sao cho tích vô hướng \overrightarrow{u}.\overrightarrow{v} =
1.

    Hướng dẫn:

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2.

  • Câu 2: Nhận biết
    Tính tích vô hướng hai vectơ

    Trong không gian hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;2;3),B( - 1;2;1),C(3; - 1; - 2). Tính tích vô hướng của \overrightarrow{AB}.\overrightarrow{AC}?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;0; - 2) \\
\overrightarrow{AC} = (2; - 3; - 5) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = 6

  • Câu 3: Thông hiểu
    Tính tổng a và b

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):\ x + y + z - 3 = 0 và đường thẳng d:\frac{x}{1} = \frac{y + 1}{2} =
\frac{z - 2}{- 1}. Gọi \Delta là hình chiếu vuông góc của d trên (\alpha)\overrightarrow{u} = (1;\ a;\ b) là một vectơ chỉ phương của \Delta với a,\ b\mathbb{\in Z}. Tính tổng a + b.

    Hướng dẫn:

    Ta có mặt phẳng (\alpha) nhận vectơ \overrightarrow{n_{\alpha}} = (1;\ 1;\
1) là vectơ pháp tuyến, đường thẳng d đi qua điểm A = (0;\  - 1;\ 2) và nhận \overrightarrow{u_{d}} = (1;\ 2;\  - 1) là vectơ chỉ phương

    Gọi (\beta) là mặt phẳng chứa đường thẳng d và vuông góc với mặt phẳng(\alpha).

    Ta có \overrightarrow{n_{\beta}} =
\overrightarrow{n_{\alpha}} \land \overrightarrow{u_{d}} = ( - 3;\ 2;\
1).

    Khi đó đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha)(\beta).

    Do đó một vectơ chỉ phương của đường thẳng \Delta\overrightarrow{u_{\Delta}} =
\overrightarrow{n_{\alpha}} \land \overrightarrow{n_{\beta}} = ( -
1;\  - 4;\ 5).

    \overrightarrow{u} = (1;\ a;\
b) nên a = 4, b = - 5. Vậy a + b = - 1.

  • Câu 4: Nhận biết
    Tìm tọa độ trọng tâm của tam giác

    Trong không gian Oxyz, cho tọa độ ba điểm A(1; - 2;3),B( -
1;2;5),C(0;0;1). Tọa độ trọng tâm G của tam giác ABC là:

    Hướng dẫn:

    Tọa độ trọng tâm G của tam giác ABC bằng:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 - 1 + 0}{3} = 0 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{- 2 + 2 + 0}{3} = 0 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{3 + 5 + 1}{3} = 3 \\\end{matrix} ight.\  \Rightarrow G(0;0;3)

    Vậy trọng tâm G tìm được là G(0;0;3).

  • Câu 5: Thông hiểu
    Tính thể tích tứ diện

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;0;0),B(0;2;0),C(0;0;3). Thể tích tứ diện OABC bằng:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (1;0;0) \Rightarrow OA = 1 \\
\overrightarrow{OB} = (0;2;0) \Rightarrow OB = 2 \\
\overrightarrow{OC} = (0;0;3) \Rightarrow OC = 3 \\
\end{matrix} ight.. Dễ thấy tứ diện OABC vuông tại O nên

    V_{OABC} = \frac{1}{6}.OA.OB.OC =
\frac{1}{6}.1.2.3 = 1

    Vậy đáp án đúng là: V = 1.

  • Câu 6: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

  • Câu 7: Thông hiểu
    Chọn đáp án chính xác

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{u}\overrightarrow{v} tạo với nhau một góc 120^{0}. Biết rằng \left| \overrightarrow{u} ight| = 2;\left|
\overrightarrow{v} ight| = 5, tính \left| \overrightarrow{u} + \overrightarrow{v}
ight|?

    Hướng dẫn:

    Ta có: \left( \left| \overrightarrow{u} +
\overrightarrow{v} ight| ight)^{2} = \left( \overrightarrow{u} +
\overrightarrow{v} ight)^{2} = {\overrightarrow{u}}^{2} +
2\overrightarrow{u}.\overrightarrow{v} +
{\overrightarrow{v}}^{2}

    = \left| \overrightarrow{u} ight|^{2}
+ 2\left| \overrightarrow{u} ight|.\left| \overrightarrow{v}
ight|\cos\left( \overrightarrow{u};\overrightarrow{v} ight) + \left|
\overrightarrow{v} ight|^{2} = 2^{2} + 2.2.5.\left( - \frac{1}{2}
ight) + 5^{2} = 19

    \Rightarrow \left| \overrightarrow{u} +
\overrightarrow{v} ight| = \sqrt{19}

    Vậy đáp án đúng là: \left|
\overrightarrow{u} + \overrightarrow{v} ight| =
\sqrt{19}.

  • Câu 8: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{x} = (2;1; - 3);\overrightarrow{y}
= (1;0; - 1). Tìm tọa độ vectơ \overrightarrow{a} = \overrightarrow{x} +
2\overrightarrow{y}?

    Hướng dẫn:

    Ta có: 2\overrightarrow{y} = (2;0; -
2). Khi đó \overrightarrow{a} =
\overrightarrow{x} + 2\overrightarrow{y} = (2 + 2;1 + 0; - 3 - 2) =
(4;1; - 5).

    Vậy \overrightarrow{a} = (4;1; -
5)

  • Câu 9: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A( - 2;3;4),B(8; - 5;6). Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng (Oyz) là điểm nào dưới đây?

    Hướng dẫn:

    Vì I là trung điểm của đoạn AB nên I(3; -
1;5).

    Khi đó hình chiếu của I lên (Oyz) là M(0; - 1;5).

  • Câu 10: Nhận biết
    Tính tích vô hướng hai vectơ

    Trong không gian Oxyz, cho các điểm A(2;1;4),B( - 2;2;6),C(6;0; -
1). Tích \overrightarrow{AB}.\overrightarrow{AC} bằng:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 4;1; - 10) \\
\overrightarrow{AC} = (4; - 1; - 5) \\
\end{matrix} ight.. Khi đó \overrightarrow{AB}.\overrightarrow{AC} =
33.

  • Câu 11: Thông hiểu
    Tìm tọa độ điểm M thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho ba điểm A(3;1; - 4),B(2;1; - 2),C(1;1; - 3). Tìm điểm M \in Ox sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất?

    Hướng dẫn:

    M \in Ox suy ra M(m;0;0). Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (3 - m;1; - 4) \\
\overrightarrow{MB} = (2 - m;1; - 2) \\
\overrightarrow{MC} = (1 - m;1; - 3) \\
\end{matrix} ight.

    Theo bài ra:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \sqrt{(6 - 3m)^{2} +
3^{2} + ( - 9)^{2}}

    = \sqrt{9m^{2} - 36m + 126} = \sqrt{9(m
- 2)^{2} + 90} \geq 3\sqrt{10};\forall m\mathbb{\in R}

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| nhỏ nhất bằng 3\sqrt{10} khi m - 2 = 0 \Leftrightarrow m = 2. Hay M(2;0;0)

  • Câu 12: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = ( - 1;\ 2;\
0)\overrightarrow{v} = (1;\  -
2;\ 3). Toạ độ của vectơ \overrightarrow{u} + \overrightarrow{v} là:

    Hướng dẫn:

    Ta có \overrightarrow{u} +
\overrightarrow{v} = ( - 1 + 1;\ 2 - 2;\ 0 + 3) = (0;\ 0;\
3).

  • Câu 13: Nhận biết
    Định tọa độ trọng tâm tam giác

    Xác định tọa độ trọng tâm G của tam giác ABC, biết rằng A(1;3;4),B(2; - 1;0),C(3;1;2)?

    Hướng dẫn:

    Tọa độ trọng tâm G của tam giác được xác định như sau:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 + 2 + 3}{3} = 2 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{3 - 1 + 1}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{4 + 0 + 2}{3} = 2 \\\end{matrix} ight.\  \Rightarrow G(2;1;2)

  • Câu 14: Nhận biết
    Tìm tọa độ trung điểm M

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm M của AB có tọa độ là:

    Hướng dẫn:

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy đáp án đúng là: (2; -
1;5).

  • Câu 15: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} =
(1;2;1);\overrightarrow{b} = ( - 1;3;0). Vectơ \overrightarrow{c} = 2\overrightarrow{a} +
\overrightarrow{b} có tọa độ là:

    Hướng dẫn:

    Ta có: 2\overrightarrow{a} =
(2;4;2). Khi đó \overrightarrow{c}
= 2\overrightarrow{a} + \overrightarrow{b} = \left( 2 + ( - 1);4 + 3;2 +
0 ight) = (1;7;2)

    Vậy \overrightarrow{c} =
(1;7;2)

  • Câu 16: Nhận biết
    Tìm tọa độ trọng tâm của tam giác

    Trong không gian Oxyz, cho tọa độ ba điểm A(5; - 2;0),B( -
2;3;0),C(0;2;3). Tọa độ trọng tâm G của tam giác ABC là:

    Hướng dẫn:

    Tọa độ trọng tâm G của tam giác ABC bằng:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{5 + ( - 2) + 0}{3} = 1\\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{- 2 + 3 + 2}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{0 + 0 + 3}{3} = 1 \\\end{matrix} ight.\  \Rightarrow G(1;1;1)

    Vậy trọng tâm G tìm được là G(1;1;1).

  • Câu 17: Thông hiểu
    Tính độ dài vectơ

    Cho tứ diện đều ABCD cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight| theo a?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm của \Delta BCD.

    Do đó \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| = \left|
3\overrightarrow{AG} ight| = 3AG.

    Ta có BG = \frac{2}{3}BI =
\frac{2}{3}.\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}.

    ABCD là tứ diện đều nên AG\bot(BCD) \Rightarrow AG\bot BG.

    Suy ra AG = \sqrt{AB^{2} - BG^{2}} =
\frac{a\sqrt{6}}{3}.

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| =
3.\frac{a\sqrt{6}}{3} = a\sqrt{6}.

  • Câu 18: Nhận biết
    Xét tính đúng sai của mỗi ý hỏi

    Các thiên thạch có đường kính lớn hơn 140m và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ Oxyz trong không gian có gốc O tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm M(6;20;0) đến điểm N( - 6; - 12;16).

    a) Đường thẳng MN có phương trình tham số là \left\{ \begin{matrix}
x = 6 + 3t \\
y = 20 + 8t,\left( t \in \mathbb{R} \right) \\
z = - 4t \\
\end{matrix} \right.. Đúng||Sai

    b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm A( - 3; -
4;12). Sai||Đúng

    c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai

    d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ M đến N là 6 phút. Đúng||Sai

    Đáp án là:

    Các thiên thạch có đường kính lớn hơn 140m và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ Oxyz trong không gian có gốc O tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm M(6;20;0) đến điểm N( - 6; - 12;16).

    a) Đường thẳng MN có phương trình tham số là \left\{ \begin{matrix}
x = 6 + 3t \\
y = 20 + 8t,\left( t \in \mathbb{R} \right) \\
z = - 4t \\
\end{matrix} \right.. Đúng||Sai

    b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm A( - 3; -
4;12). Sai||Đúng

    c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai

    d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ M đến N là 6 phút. Đúng||Sai

    a) Ta có: M(6;20;0),N( - 6; -
12;16)

    \Rightarrow \overrightarrow{MN}( - 12; -
32;16) = - 4.(3;8; - 4)

    Chọn \overrightarrow{u_{MN}} = (3;8; -
4).

    Khi đó, phương trình MN:\left\{
\begin{matrix}
x = 6 + 3t \\
y = 20 + 8t(t \in R) \\
z = - 4t \\
\end{matrix} ight.

    Do đó, a đúng

    b) Phạm vi theo dõi của hệ thống ra đa là mặt cầu (O):x^{2} + y^{2} + z^{2} = 13^{2}.

    Tọa độ giao điểm của MN và (O) là nghiệm của phương trình

    (6 + 3t)^{2} + (20 + 8t)^{2} + ( -
4t)^{2} = 13^{2}

    \Leftrightarrow 89t^{2} + 356t - 267 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1 \Rightarrow A(3;12;4) \\
t = - 3 \Rightarrow B( - 3; - 4;12) \\
\end{matrix} ight.

    Ta có \overrightarrow{MA}( - 3; -
8;4),\overrightarrow{MB}( - 9; - 24;12)

    \Rightarrow \overrightarrow{MB} =
3\overrightarrow{MA}

    Điểm gặp đầu tiên là A(3;12;4)

    Do đó, b sai

    c) AB = \sqrt{( - 3 - 3)^{2} + ( - 4 -
12)^{2} + (12 - 4)^{2}} = \sqrt{356}

    Đơn vị độ dài trên mỗi trục là 1000 km nên khoảng cách AB \approx 18900(km)

    Do đó, c đúng

    d) AB = 2\sqrt{89},MN =
4\sqrt{89}

    \Rightarrow t_{MN} = 2t_{AB} = 2.3 =
6 (phút)

    Do đó, d đúng

  • Câu 19: Nhận biết
    Tính tích vô hướng

    Cho hai véc tơ \overrightarrow{a} = (1; -
2;3), \overrightarrow{b} = ( -
2;1;2). Khi đó, tích vô hướng \left( \overrightarrow{a} + \overrightarrow{b}
\right).\overrightarrow{b} bằng

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} =
( - 1; - 1;5)

    \Rightarrow \left(
\overrightarrow{a} + \overrightarrow{b} ight).\overrightarrow{b} = -
1.( - 2) + ( - 1).1 + 5.2 = 11.

  • Câu 20: Nhận biết
    Tính cosin góc giữa hai vecto

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (2;1;0)\overrightarrow{b} = ( - 1;0; - 2). Tính \cos\left(
\overrightarrow{a},\overrightarrow{b} \right).

    Hướng dẫn:

    Ta có: \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{-
2}{\sqrt{5}.\sqrt{5}} = - \frac{2}{5}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo