Trên hệ trục tọa độ , cho
,
, tích
bằng
Ta có
Trên hệ trục tọa độ , cho
,
, tích
bằng
Ta có
Trong không gian, với mọi vectơ ta có
Công thức tích vô hướng của hai vectơ .
Trong không gian , cho bốn điểm
,
,
và
. Trong đó có ba điểm thẳng hàng là
Ta có: ,
Mà , nên hai vecto
,
cùng phương, hay ba điểm
thẳng hàng.
Nhận xét: Có thể vẽ phát họa lên hệ tọa độ để nhìn nhận dễ dàng hơn.
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Biết rằng và
. Tính
?
Ta có:
Trong không gian tọa độ , cho hai điểm
. Tìm tọa độ điểm
sao cho
là trung điểm của
?
Gọi tọa độ điểm . Vì M là trung điểm của AB nên ta có:
Vậy tọa độ điểm B cần tìm là .
Trong không gian hệ trục tọa độ , cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên
Trong không gian với hệ tọa độ , cho mặt phẳng
và đường thẳng
. Gọi
là hình chiếu vuông góc của
trên
và
là một vectơ chỉ phương của
với
. Tính tổng
.
Ta có mặt phẳng nhận vectơ
là vectơ pháp tuyến, đường thẳng
đi qua điểm
và nhận
là vectơ chỉ phương
Gọi là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
.
Ta có .
Khi đó đường thẳng là giao tuyến của hai mặt phẳng
và
.
Do đó một vectơ chỉ phương của đường thẳng là
.
Mà nên
,
. Vậy
.
Trong không gian , cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian hệ trục tọa độ , cho hai vectơ
và
. Mệnh đề nào sau đây sai?
Ta có: đúng
suy ra Hai vectơ
không cùng phương.
Vậy mệnh đề sai là: “Hai vectơ cùng phương”.
Trong không gian , cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Trong không gian , cho
,
. Gọi
là trọng tâm tam giác
, vectơ
có độ dài bằng:
Vì G là trọng tâm tam giác nên tọa độ
.
Ta có:
Trong không gian , cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Trong không gian hệ trục tọa độ , cho tọa độ ba điểm
thẳng hàng. Khi đó giá trị của biểu thức
là:
Ta có: . Vì A; B; C thẳng hàng nên
cùng phương
Trong không gian , cho hai điểm
và
. Trung điểm
của
có tọa độ là:
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Trong không gian , cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là .
Trong không gian , cho
,
. Côsin của góc giữa
và
bằng
Ta có:
.
Trong không gian với hệ trục tọa độ , cho các điểm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có: suy ra
và
không vuông góc với nhau.
Vậy mệnh đề sai là: “”.
Trong không gian , cho hai vectơ
và
. Tính
?
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: