Trong không gian , cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian , cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là
Trong không gian với hệ tọa độ , cho mặt phẳng
có phương trình
và hai điểm
. Khi đó:
a) [NB] Mặt phẳng có vec tơ pháp tuyến
.Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] Khoảng cách từ điểm A đến là
. Đúng||Sai
d) [VD] Cho điểm di động trên
. Khi đó giá trị nhỏ nhất của biểu thức
bằng
. Sai||Đúng
Trong không gian với hệ tọa độ , cho mặt phẳng
có phương trình
và hai điểm
. Khi đó:
a) [NB] Mặt phẳng có vec tơ pháp tuyến
.Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] Khoảng cách từ điểm A đến là
. Đúng||Sai
d) [VD] Cho điểm di động trên
. Khi đó giá trị nhỏ nhất của biểu thức
bằng
. Sai||Đúng
a) Đúng.
Ta có: .
b) Đúng.
Ta có: .
c) Đúng.
Khoảng cách từ điểm A đến là:
.
d) Sai.
Gọi là điểm sao cho
ta có
.
Ta có:
nhỏ nhất khi
nhỏ nhất
là hình chiếu vuông góc của
lên mặt phẳng
.
giá trị nhỏ nhất của biểu thức
là:
.
Trong không gian với hệ trục tọa độ , cho tọa độ ba điểm
. Thể tích tứ diện
bằng:
Ta có: . Dễ thấy tứ diện
vuông tại
nên
Vậy đáp án đúng là: .
Trong không gian với hệ tọa độ , biết
;
và góc giữa hai vectơ
và
bằng
. Tìm
để vectơ
vuông góc với vectơ
.
Ta có: .
Vectơ vuông góc với vectơ
khi và chỉ khi:
.
Trong không gian với hệ tọa độ , cho vectơ
và
. Tính tích vô hướng
.
Ta có .
Trong không gian , cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Tìm tọa độ trung điểm của đoạn thẳng
. Biết tọa độ hai điểm
và
.
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Trong không gian , cho
, điểm
và điểm
. Tọa độ trọng tâm tam giác
là
Từ
Tọa độ trọng tâm của tam giác
là
Vậy tọa độ trọng tâm .
Trong không gian , cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Cho hai véc tơ ,
. Khi đó, tích vô hướng
bằng
Ta có:
.
Trong không gian với hệ trục tọa độ cho hai điểm
. Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng
là điểm nào dưới đây?
Vì I là trung điểm của đoạn AB nên .
Khi đó hình chiếu của I lên là
.
Trong không gian , cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian , cho tọa độ các vectơ
;
và
. Mệnh đề nào sau đây sai?
Ta có: suy ra “
” là mệnh đề sai.
Trong không gian tọa độ , cho hai điểm
. Tìm tọa độ điểm
sao cho
là trung điểm của
?
Gọi tọa độ điểm . Vì M là trung điểm của AB nên ta có:
Vậy tọa độ điểm B cần tìm là .
Trong không gian , cho các điểm
. Tích
bằng:
Ta có: . Khi đó
.
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Tọa độ vectơ
là:
Ta có:
Vậy
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Trong không gian , cho hai vectơ
và
. Tính tích vô hướng
?
Ta có:
Trong không gian hệ trục tọa độ , cho tam giác
có
. Tính diện tích tam giác
?
Ta có:
Suy ra . Lại có:
Suy ra diện tích tam giác là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: