Một vật thể nằm giữa hai mặt phẳng và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Một vật thể nằm giữa hai mặt phẳng và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Cho hình phẳng D giới hạn bởi đường cong , trục hoành và các đường thẳng
;
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường và trục hoành khi quay quanh Ox là:
Cho hàm số có đồ thị như hình vẽ:
Các biểu thức xác định bởi
. Mệnh đề nào sau đây đúng?
Dựa vào hình vẽ và diện tích hình phẳng ta có:
(hệ số góc của tiếp tuyến tại x = 1)
Như vậy
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Một chi tiết máy được thiết kế như hình vẽ bên.

Các tứ giác là các hình vuông cạnh
. Tứ giác
là hình chữ nhật có
. Mặt bên
được mài nhẵn theo đường parabol
có đỉnh parabol nằm trên cạnh
. Tính thể tích của chi tiết máy gần nhất với giá trị nào dưới đây?

Gọi hình chiếu của trên
và
là
và
.
Vật thể được chia thành hình lập phương có cạnh
, thể tích
và phần còn lại có thể tích
.
Khi đó thể tích vật thể .
Đặt hệ trục sao cho
trùng với
,
trùng với
,
trùng với tia
song song với
.
Khi đó Parabol có phương trình dạng
, đi qua điểm
do đó
.
Cắt vật thể bởi mặt phẳng vuông góc với và đi qua điểm
ta được thiết diện là hình chữ nhật
có cạnh là
và
Do đó diện tích
Áp dụng công thức thể tích vật thể ta có .
Từ đó
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
.
Phương trình hoành độ giao điểm .
![]()
.
Cho đường cong . Xét điểm
có hoành độ dương thuộc
, tiếp tuyến của
tại
tạo với
một hình phẳng có diện tích bằng
. Hoành độ điểm
thuộc khoảng nào dưới đây??
Ta có: có
Phương trình tiếp tuyến d của (C) tại A là
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)
Vậy
Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng . Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)
Sử dụng phương trình chính tắc của Elip: , với 2a là độ dài trục lớn, 2b là độ dài trục nhỏ.
Quả bóng bầu dục sẽ có dạng elip.
Độ dài trục lớn bằng
Ta có diện tích đường tròn thiết diện là
Ta sẽ có phương trình elip
Một biển quảng cáo có dạng hình elip với bốn đỉnh như hình vẽ:
Người ta chia elip bởi Parabol có đỉnh , trục đối xứng
và đi qua các điểm
. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)
Phương trình đường Elip
Ta có:
Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình , (a > 0), đi qua M; N
Diện tích phần tô đậm
Đặt
Đổi cận
Diện tích hình Elip là
Suy ra diện tích phần còn lại là:
Kinh phí sử dụng là đồng.
Cho hình (H) giới hạn bởi đồ thị hàm số , cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Biết thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Cho hình (H) giới hạn bởi đồ thị hàm số , cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Biết thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
,
bằng
. Tìm k.
Kí hiệu đồ thị hàm số như sau:
Ta thấy hàm số luôn đồng biến trên
và có tâm đối xứng là
. Hình vẽ minh họa ở bên ta thấy với
thì
, với
thì
.
Vậy
Một khối cầu có bán kính là , người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng
để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu
(làm tròn đến hàng đơn vị)
Đáp án: 622
Một khối cầu có bán kính là , người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng
để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu
(làm tròn đến hàng đơn vị)
Đáp án: 622
Trên hệ trục tọa độ , xét đường tròn
:
Nếu cho nửa trên trục của
quay quanh trục
ta được mặt cầu có bán kính bằng 6.
Nếu cho hình phẳng giới hạn bởi nửa trên trục
của
, trục
, hai đường thẳng
quay xung quanh
ta sẽ được khối tròn xoay chính là 1 phần cắt đi của khối cầu trong đề bài.
Ta có
Suy ra nửa trên trục của
có phương trình
Thể tích vật thể tròn xoay khi cho quay quanh
là
.
Thể tích khối cầu là .
Thể tích cần tìm là .
Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh nằm trên Parabol và hai đỉnh
,
nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng
, biết
. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.
Đáp án: 3,7||3.7
Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh nằm trên Parabol và hai đỉnh
,
nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng
, biết
. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.
Đáp án: 3,7||3.7
Gắn hệ trục tọa độ như hình vẽ.
Phương trình parabol có dạng .
Ta có:
Diện tích để trang trí hoa là:
.
Vậy số tiền để mua hoa trang trí: triệu.
Diện tích hình phẳng được gạch chéo trong hình bên bằng
Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:
Cho hàm số có đồ thị
. Xét các điểm
sao cho tiếp tuyến tại
và
của
vuông góc với nhau, diện tích hình phẳng giới hạn bởi
và đường thẳng
bằng
. Gọi
lần lượt là hoành độ của
và
. Giá trị của
bằng:
Hình vẽ minh họa
Ta có: có TXĐ:
Giả sử và
Phương trình tiếp tuyến tại điểm A của (P) là
Phương trình tiếp tuyến tại điểm B của (P) là
Vì nên ta có:
Phương trình đường thẳng AB
Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:
Thay ta có:
Cho một mô hình mô phỏng một đường hầm như hình vẽ bên.
Chiều dài của đường hầm mô hình là , mặt phẳng vuông góc với mặt đáy của đường hầm tạo được thiết diện là một hình parabol, thiết diện có độ dài cạnh đáy gấp đôi chiều cao. Tính thể tích không gian bên trong đường hầm mô hình, biết chiều cao của mỗi thiết diện parabol cho bởi công thức
(đơn vị là
), với
là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Kết quả làm tròn đến hàng đơn vị.
Đáp án: 29
Cho một mô hình mô phỏng một đường hầm như hình vẽ bên.
Chiều dài của đường hầm mô hình là , mặt phẳng vuông góc với mặt đáy của đường hầm tạo được thiết diện là một hình parabol, thiết diện có độ dài cạnh đáy gấp đôi chiều cao. Tính thể tích không gian bên trong đường hầm mô hình, biết chiều cao của mỗi thiết diện parabol cho bởi công thức
(đơn vị là
), với
là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Kết quả làm tròn đến hàng đơn vị.
Đáp án: 29
Xét một thiết diện parabol có chiều cao là và độ dài đáy
và chọn hệ trục
như hình vẽ bên
Parabol có phương trình
Có
Diện tích của thiết diện:
, kết hợp chiều cao
Ta được diện tích thiết diện là .
Thể tích không gian bên trong của đường hầm mô hình:
Vậy .
Hình elip được ứng dụng nhiều trong thực tiễn, đặc biệt là kiến trúc, xây dựng, thiết bị nội thất,... Mặt trong (lọt lòng) và ngoài (phủ bì) của một bồn rửa (lavabo) bằng sứ có hình dạng là một nửa khối tròn xoay khi quay quanh một trục của 2 elip có chung các trục đối xứng (hình minh họa). Thông số kĩ thuật mặt trên của bồn rửa: dài x rộng là mm (phủ bì) và elip (lọt lòng) có trục lớn, trục nhỏ ít hơn elip phủ bì một khoảng 40 mm. Tính thể tích chứa nước của bồn rửa (đơn vị: lít) (làm tròn kết quả đến hàng phần mười).
Đáp án: 18,8
Hình elip được ứng dụng nhiều trong thực tiễn, đặc biệt là kiến trúc, xây dựng, thiết bị nội thất,... Mặt trong (lọt lòng) và ngoài (phủ bì) của một bồn rửa (lavabo) bằng sứ có hình dạng là một nửa khối tròn xoay khi quay quanh một trục của 2 elip có chung các trục đối xứng (hình minh họa). Thông số kĩ thuật mặt trên của bồn rửa: dài x rộng là mm (phủ bì) và elip (lọt lòng) có trục lớn, trục nhỏ ít hơn elip phủ bì một khoảng 40 mm. Tính thể tích chứa nước của bồn rửa (đơn vị: lít) (làm tròn kết quả đến hàng phần mười).
Đáp án: 18,8
Chọn hệ trục tọa độ thích hợp với đơn vị trên trục là decimet.
Phương trình elip lọt lòng: .
Thể tích chứa nước của bồn rửa: lít.
Cho một mô hình mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài
; khi cắt hình này bởi mặt phẳng vuông góc với đấy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parobol cho bởi công thức
, với
là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Tính thể tích (theo đơn vị
) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị )


Xét một thiết diện parabol có chiều cao là và độ dài đáy
và chọn hệ trục
như hình vẽ trên.
Parabol có phương trình
Có
Diện tích của thiết diện:
,
Suy ra thể tích không gian bên trong của đường hầm mô hình:
Xét hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?
Ta có đồ thị hàm số tiếp xúc với trục hoành tại
.
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng
.
Gọi S1 là diện tích hình phẳng giới hạn bởi đồ thị hàm số , đoạn thẳng
và trục hoành.
Gọi S2 là diện tích của tam giác .
Theo bài ra ta có:
Vậy
Một cổng chào có dạng hình Parabol chiều cao , chiều rộng chân đế
. Người ta căng hai sợi dây trang trí
,
nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số
, tính
?
Đáp án: 5
Một cổng chào có dạng hình Parabol chiều cao , chiều rộng chân đế
. Người ta căng hai sợi dây trang trí
,
nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số
, tính
?
Đáp án: 5
Chọn hệ trục tọa độ như hình vẽ.
Phương trình Parabol có dạng .
Do đi qua điểm có tọa độ
suy ra:
.
Từ hình vẽ ta có: .
Diện tích hình phẳng giới bạn bởi Parabol và đường thẳng
là:
.
Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng
:
là :
Từ giả thiết suy ra .
Do đó nên
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: