Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Gọi là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành như hình vẽ:
Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
Từ hình vẽ ta thấy
Do đó
Vậy mệnh đề sai là:
Cho hình thang cong giới hạn bởi các đường
. Đường thẳng
chia
thành hai phần có diện tích
và
(hình vẽ bên).
Tính giá trị để
?
Ta có: do đó ta được:
Theo bài ra ta có:
.
Diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là:
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Vì nên phương trình luôn có 2 nghiệm phân biệt
với
Ta có: .
Diện tích hình phẳng giới hạn bởi (P) và (d) là:
Vậy diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là
.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Cho hàm số có đồ thị như hình vẽ:
Các biểu thức xác định bởi
. Mệnh đề nào sau đây đúng?
Dựa vào hình vẽ và diện tích hình phẳng ta có:
(hệ số góc của tiếp tuyến tại x = 1)
Như vậy
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Cho một vật thể bằng gỗ có dạng hình trụ với chiều cao và bán kính đáy cùng bằng. Cắt khối gỗ đó bởi một mặt phẳng đi qua đường kính của một mặt đáy của khối gỗ và tạo với mặt phẳng đáy của khối gỗ một góc
ta thu được hai khối gỗ có thể tích là
và
, với
. Tính thể tích
.



Khi cắt khối gỗ hình trụ ta được một hình nêm có thể tích như hình vẽ.
Chọn hệ trục tọa độ như hình vẽ.
Nửa đường tròn đường kính có phương trình là
,
.
Một mặt phẳng vuông góc với trục tại điểm
có hoành độ
, cắt hình nêm theo thiết diện là
vuông tại
và có
.
Ta có .
có diện tích
.
Thể tích hình nêm là
.
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Cho là hình phẳng giới hạn bởi parabol
và nửa elip có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Gọi là diện tích của, biết
(với
). Tính
?
Hoành độ giao điểm của hai đồ thị:
Do tính chất đối xứng của đồ thị nên
. Đặt
Đổi cận
Với
Suy ra
Vậy
Gọi là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Một biển quảng cáo có dạng hình elip với bốn đỉnh như hình vẽ:
Người ta chia elip bởi Parabol có đỉnh , trục đối xứng
và đi qua các điểm
. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)
Phương trình đường Elip
Ta có:
Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình , (a > 0), đi qua M; N
Diện tích phần tô đậm
Đặt
Đổi cận
Diện tích hình Elip là
Suy ra diện tích phần còn lại là:
Kinh phí sử dụng là đồng.
Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết
cm,
cm. Biết giá trang trí hoa văn
là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.


Đưa parabol vào hệ trục ta tìm được phương trình là:
.
Diện tích hình phẳng giới hạn bởi , trục hoành và các đường thẳng
,
là:
.
Tổng diện tích phần bị khoét đi:
.
Diện tích của hình vuông là: .
diện tích bề mặt hoa văn là: .
Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: đồng
Một viên gạch hoa hình vuông cạnh . Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô đen như hình vẽ dưới).

Tính diện tích mỗi cánh hoa của viên gạch.

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng ), các cánh hoa tạo bởi các đường parabol có phương trình
,
,
,
.
Diện tích một cánh hoa (nằm trong góc phàn tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số,
và hai đường thẳng
.
Do đó diện tích một cánh hoa bằng
.
Xét hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?
Ta có đồ thị hàm số tiếp xúc với trục hoành tại
.
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng
.
Gọi S1 là diện tích hình phẳng giới hạn bởi đồ thị hàm số , đoạn thẳng
và trục hoành.
Gọi S2 là diện tích của tam giác .
Theo bài ra ta có:
Vậy
Cho đường thẳng và parabol
(
là tham số thực). Gọi
lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi
thì
thuộc khoảng nào dưới đây?
Phương trình hoành độ giao điểm của của hai đồ thị:
Theo giả thiết, phương trình có hai nghiệm phân biệt
Khi đó, phương trình có hai nghiệm thỏa mãn:
Diện tích hình phẳng:
Diện tích hình phẳng:
Theo giả thiết ta có:
Cho hình phẳng D giới hạn bởi đường cong , trục hoành và các đường thẳng
,
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường ,
,
và trục hoành khi quay quanh Ox là:
(đvtt).
Cho hai hàm số có đồ thị như hình vẽ:
Gọi là diện tích hình phẳng được gạch trong hình vẽ. Khi
thì
bằng bao nhiêu?
Phương trình hoành độ giao điểm
Ký hiệu là diện tích hình phẳng như hình vẽ:
Ta có:
Vì vậy
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng
,
.
Xét phương trình hoành độ giao điểm .
Vậy diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng
,
được tính bởi công thức:
Đặt ;
Đặt
Khi đó
.
Vậy từ đây ta có .
Suy ra
Cho hàm số liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị
, trục hoành, hai đường thẳng
(như hình vẽ bên).
Giả sử là diện tích của hình phẳng
. Chọn công thức đúng?
Dựa vào đồ thị hình vẽ ta thấy:
+ Đồ thị cắt trục hoành tại điểm
+ Trên đoạn , đồ thị ở phía dưới trục hoành nên
+ Trên đoạn , đồ thị ở phía trên trục hoành nên
Do đó:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: