Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 13 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính giá trị biểu thức

    Cho hàm số y = \frac{1}{2}x^{2} có đồ thị (P). Xét các điểm A;B \in (P) sao cho tiếp tuyến tại AB của (P) vuông góc với nhau, diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \frac{9}{4}. Gọi x_{1};x_{2} lần lượt là hoành độ của AB. Giá trị của \left( x_{1} + x_{2} ight)^{2} bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:y = \frac{1}{2}x^{2} có TXĐ: D\mathbb{= R}

    y' = x

    Giả sử A\left(
x_{1};\frac{1}{2}{x_{1}}^{2} ight),B\left(
x_{2};\frac{1}{2}{x_{2}}^{2} ight) \in (P)x_{1} eq x_{2}

    Phương trình tiếp tuyến tại điểm A của (P) là y = x_{1}\left( x - x_{1} ight) +
\frac{1}{2}{x_{1}}^{2}

    \Rightarrow y = x_{1}x -
\frac{1}{2}{x_{1}}^{2}\ \ \ \left( d_{1} ight)

    Phương trình tiếp tuyến tại điểm B của (P) là y = x_{2}\left( x - x_{2} ight) +
\frac{1}{2}{x_{2}}^{2}

    \Rightarrow y = x_{2}x -
\frac{1}{2}{x_{2}}^{2}\ \ \ \left( d_{2} ight)

    \left( d_{1} ight)\bot\left( d_{2}
ight) nên ta có: x_{1}x_{2} = - 1
\Leftrightarrow x_{2} = - \frac{1}{x_{1}}

    Phương trình đường thẳng AB

    \dfrac{x - x_{1}}{x_{2} - x_{1}} =\dfrac{y - \dfrac{1}{2}{x_{1}}^{2}}{\dfrac{1}{2}{x_{2}}^{2} -\dfrac{1}{2}{x_{1}}^{2}}

    \Leftrightarrow \frac{1}{2}\left( x -
x_{1} ight)\left( {x_{2}}^{2} - {x_{1}}^{2} ight) = \left( y -
\frac{1}{2}{x_{1}}^{2} ight)\left( x_{2} - x_{1} ight)

    \Leftrightarrow \left( x - x_{1}
ight)\left( x_{2} + x_{1} ight) = 2y - {x_{1}}^{2}

    \Leftrightarrow \left( x_{2} + x_{1}
ight)x - 2y - x_{1}x_{2} = 0

    \Leftrightarrow y =
\frac{1}{2}\left\lbrack \left( x_{2} + x_{1} ight)x - x_{1}x_{2}
ightbrack = \frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)x +
1 ightbrack

    Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:

    S =
\frac{1}{2}\int_{x_{1}}^{x_{2}}{\left\lbrack \left( x_{1} + x_{2}
ight)x + 1 - x^{2} ightbrack dx}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left. \ \left\lbrack \left( x_{1} + x_{2}
ight)\frac{x^{2}}{2} + x - \frac{x^{3}}{3} ightbrack
ight|_{x_{1}}^{x_{2}}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)\left(
\frac{{x_{2}}^{2}}{2} - \frac{{x_{1}}^{2}}{2} ight) + \left( x_{2} -
x_{1} ight) - \frac{{x_{2}}^{3} - {x_{1}}^{3}}{3}
ightbrack

    \Leftrightarrow 27 = - 3\left(
x_{1}{x_{2}}^{2} - {x_{1}}^{3} + {x_{2}}^{3} - {x_{1}}^{2}x_{2} ight)
+ 6\left( x_{2} - x_{1} ight) - 2{x_{2}}^{3} +
2{x_{1}}^{3}

    \Leftrightarrow 27 = - 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight) + 6\left( x_{2} - x_{1} ight)

    \Leftrightarrow 27 = 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( {x_{1}}^{2} + {x_{2}}^{2} + 2 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( x_{2} - x_{1} ight)^{2}

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)^{3} \Leftrightarrow x_{2} - x_{1} = 3

    Thay x_{2} = - \frac{1}{x_{1}} ta có:

    - \frac{1}{x_{1}} - x_{1} = 3
\Leftrightarrow - 1 - {x_{1}}^{2} - 3x_{1} = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = \dfrac{- 3 - \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{2}{3 +\sqrt{5}} \\x_{1} = \dfrac{- 3 + \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{- 2}{- 3 +\sqrt{5}} \\\end{matrix} ight.

    \Rightarrow \left( x_{1} + x_{2}
ight)^{2} = 5

  • Câu 2: Vận dụng cao
    Tính thể tích V

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Gợi ý:

    Gắn hệ trục tọa độ mới.

    Cho hai hàm số y = f(x), y = g(x) liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số y = f(x), y = g(x) và hai đường thẳng x = a, x = b khi quay quanh trục Ox là V = \pi\int_{a}^{b}{\left|f^{2}(x) - g^{2}(x) ight|dx}

    Hướng dẫn:

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 3: Vận dụng
    Ghi đáp án đúng vào chỗ trống

    Một khối cầu có bán kính là 6\
dm, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng 3\ dm để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu dm^{3}(làm tròn đến hàng đơn vị)

    Đáp án: 622

    Đáp án là:

    Một khối cầu có bán kính là 6\
dm, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng 3\ dm để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu dm^{3}(làm tròn đến hàng đơn vị)

    Đáp án: 622

    Trên hệ trục tọa độ Oxy, xét đường tròn (C): (x - 6)^{2} + y^{2} = \ 36

    Nếu cho nửa trên trục Ox của (C) quay quanh trục Ox ta được mặt cầu có bán kính bằng 6.

    Nếu cho hình phẳng (H) giới hạn bởi nửa trên trục Ox của (C), trục Ox, hai đường thẳng x = 0;\ x = 3 quay xung quanh Ox ta sẽ được khối tròn xoay chính là 1 phần cắt đi của khối cầu trong đề bài.

    Ta có (x - 6)^{2} + y^{2} = \ 36
\Leftrightarrow y = \pm \sqrt{36 - (x - 6)^{2}}

    Suy ra nửa trên trục Ox của (C) có phương trình y = \sqrt{36 - (x - 6)^{2}} = \sqrt{12x -
x^{2}}

    Thể tích vật thể tròn xoay khi cho (H) quay quanh OxV_{1} =
\pi\int_{0}^{3}\left( 12x - x^{2} ight) = 45\pi.

    Thể tích khối cầu là V_{2} =
\frac{4}{3}\pi.6^{3} = 288\pi.

    Thể tích cần tìm là V = V_{2} - 2V_{1} =
198\pi \approx 622.

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Xét hình phẳng (H) giới hạn bởi đồ thị hàm số y = (x + 3)^{2}, trục hoành và đường thẳng x = 0. Gọi A(0;9),B(b;0);( - 3 < b < 0). Tính giá trị của tham số b để đoạn thẳng AB chia (H) thành hai phần có diện tích bằng nhau?

    Chỗ nhập nội dung câu trả lời tự luận
    Gợi ý:

    Ta có đồ thị hàm số y = (x +3)^{2} tiếp xúc với trục hoành tại x = - 3.

    Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x +3)^{2}, trục hoành và đường thẳng x= - 3,x = 0.

    Gọi S1 là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x + 3)^{2}, đoạn thẳng AB và trục hoành.

    Gọi S2 là diện tích của tam giác OAB.

    Theo bài ra ta có:

    S_{1} = S_{2}

    \Leftrightarrow S = 2S_{2}\Leftrightarrow \int_{- 3}^{0}{(x + 3)^{2}dx} =2.\frac{1}{2}.OA.OB

    \Leftrightarrow - 9b = 9 \Leftrightarrowb = - 1

    Vậy b = - 1

  • Câu 5: Vận dụng
    Tính số tiền để mua vật dụng trang trí

    Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng 10 cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết AB = 5cm, OH
= 4 cm. Biết giá trang trí hoa văn 1cm^{2} là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.

    Hướng dẫn:

    Description: 28907191_574491819585491_67127502_n

    Đưa parabol vào hệ trục Oxy ta tìm được phương trình là: (P):y = -
\frac{16}{25}x^{2} + \frac{16}{5}x.

    Diện tích hình phẳng giới hạn bởi (P):y =
- \frac{16}{25}x^{2} + \frac{16}{5}x, trục hoành và các đường thẳng x = 0, x = 5 là:

    S = \int_{0}^{5}\left( -
\frac{16}{25}x^{2} + \frac{16}{5}x \right)dx =
\frac{40}{3}.

    Tổng diện tích phần bị khoét đi: S_{1} =
4S = \frac{160}{3} cm^{2}.

    Diện tích của hình vuông là: S_{hv} =
100\ cm^{2}.

    diện tích bề mặt hoa văn là: S_{2} =
S_{hv} - S_{1} = 100 - \frac{160}{3} = \frac{140}{3}\
cm^{2}.

    Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: \frac{140}{3}.50000 \approx 2333333 đồng

  • Câu 6: Vận dụng
    Tính thể tích khối tròn xoay

    Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với A( - 2;3),B(3;6),C(3;0),D( - 2;0). Quay hình thang ABCD xung quanh trục Ox thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??

    Hướng dẫn:

    Phương trình các cạnh của hình thang là: \left\{ \begin{matrix}
AD:x = - 2 \\
CD:y = 0 \\
BC:x = 3 \\
AB:3x - 5y + 21 = 0 \\
\end{matrix} ight.

    Ta thấy ABCD là hình thang vuông có CD:y = 0 nên khối tròn xoay cần tính là

    V = \pi\int_{- 2}^{3}{\frac{(3x +
21)^{2}}{25}dx} = 105\pi

  • Câu 7: Vận dụng cao
    Tính thể tích chi tiết máy

    Một chi tiết máy được thiết kế như hình vẽ bên.

    Các tứ giác ABCD,CDPQ là các hình vuông cạnh 2,5\ cm. Tứ giác ABEF là hình chữ nhật có BE = 3,5\ cm. Mặt bên PQEF được mài nhẵn theo đường parabol (P) có đỉnh parabol nằm trên cạnh EF. Tính thể tích của chi tiết máy gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Gọi hình chiếu của P,\ Q trên AFBERS.

    Vật thể được chia thành hình lập phương ABCD.PQRS có cạnh 2,5\ cm, thể tích V_{1} = \frac{125}{8}\ cm^{3} và phần còn lại có thể tích V_{2}.

    Khi đó thể tích vật thể V = V_{1} + V_{2}
= \frac{125}{8} + V_{2}.

    Đặt hệ trục Oxyz sao cho O trùng vớiF, Ox trùng với FA, Oy trùng với tia Fy song song với AD.

    Khi đó Parabol (P) có phương trình dạng y = ax^{2}, đi qua điểm P\left( 1;\frac{5}{2} \right) do đó a = \frac{5}{2} \Rightarrow y =
\frac{5}{2}x^{2}.

    Cắt vật thể bởi mặt phẳng vuông góc với Ox và đi qua điểm M(x;0;0),\ 0 \leq x \leq 1 ta được thiết diện là hình chữ nhật MNHK có cạnh là MN = \frac{5}{2}x^{2}MK = \frac{5}{2}

    Do đó diện tích S(x) =
\frac{25}{4}x^{2}

    Áp dụng công thức thể tích vật thể ta có V_{2} = \int_{0}^{1}{\frac{25}{4}x^{2}dx} =
\frac{25}{12}.

    Từ đó V = \frac{125}{8} + \frac{25}{12} =
\frac{425}{24}cm^{3}

  • Câu 8: Vận dụng
    Tính diện tích nhỏ nhất

    Diện tích nhỏ nhất giới hạn bởi parabol (P):y = x^{2} + 1 và đường thẳng d:y = mx + 2 là:

    Hướng dẫn:

    Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình

    x^{2} + 1 = mx + 2 \Leftrightarrow x^{2}
- mx - 1 = 0

    \Delta = m^{2} + 4 > 0;\forall
m\mathbb{\in R} nên phương trình luôn có 2 nghiệm phân biệt

    x_{1} = \frac{m - \sqrt{m^{2} +
4}}{2};x_{2} = \frac{m + \sqrt{m^{2} + 4}}{2} với x_{1} < x_{2}

    Ta có: \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}.x_{2} = - 1 \\
x_{2} - x_{1} = \sqrt{m^{2} + 4} \\
\end{matrix} ight..

    Diện tích hình phẳng giới hạn bởi (P) và (d) là:

    S = \int_{x_{1}}^{x_{2}}{\left| \left(
x^{2} - mx - 1 ight) ight|dx}

    = \left| \int_{x_{1}}^{x_{2}}{\left(
x^{2} - mx - 1 ight)dx} ight| = \left| \left. \ \left(
\frac{x^{3}}{2} - \frac{mx^{2}}{2} - x ight) ight|_{x_{1}}^{x_{2}}
ight|

    = \left| \frac{1}{3}\left( {x_{2}}^{3} -
{x_{1}}^{3} ight) - \frac{m}{2}\left( {x_{2}}^{2} - {x_{1}}^{2}
ight) - \left( x_{2} - x_{1} ight) ight|

    = \left( x_{2} - x_{1} ight)\left|
\frac{1}{3}\left( {x_{2}}^{2} + x_{1}x_{2} + {x_{1}}^{2} ight) -
\frac{m}{2}\left( x_{2} + x_{1} ight) - 1 ight|

    = \left( x_{2} - x_{1} ight)\left|
\frac{1}{3}\left( x_{2} + x_{1} ight)^{2} - x_{2}x_{1} -
\frac{m}{2}\left( x_{2} + x_{1} ight) - 1 ight|

    = \sqrt{m^{2} + 4}.\left| \frac{m^{2} +
1}{3} - \frac{m^{2}}{2} - 1 ight|

    = \sqrt{m^{2} + 4}.\left|
\frac{m^{2}}{6} - \frac{2}{3} ight| = \sqrt{m^{2} + 4}.\frac{m^{2} +
4}{6} \geq \frac{4}{3};\forall m\mathbb{\in R}

    Vậy diện tích nhỏ nhất giới hạn bởi parabol (P):y = x^{2} + 1 và đường thẳng d:y = mx + 2\frac{4}{3}.

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x - 1)e^{2x}, trục hoành và các đường thẳng x = 0, x = 2.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm (x -
1).e^{2x} = 0 \Leftrightarrow x = 1.

    Vậy diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = (x - 1).e^{2x}, trục hoành và các đường thẳng x = 0, x = 2 được tính bởi công thức:

    S = - \int_{0}^{1}{(x - 1).e^{2x}dx} +
\int_{1}^{2}{(x - 1).e^{2x}dx}

    = \int_{1}^{0}{(x - 1).e^{2x}dx} +
\int_{1}^{2}{(x - 1).e^{2x}dx}

    Đặt I_{1} = \int_{1}^{0}{(x -
1).e^{2x}dx}; I_{2} =
\int_{1}^{2}{(x - 1)e^{2x}dx}

    Đặt x - 1 = u \Rightarrow dx = du;vdv =
e^{2x}dx \Rightarrow v = \frac{1}{2}.e^{2x}

    Khi đó I_{0} = \left. \
\frac{1}{2}.e^{2x}.(x - 1) ight|_{a}^{b} -
\frac{1}{2}\int_{a}^{b}{e^{2x}dx}

    = \left. \ \frac{1}{2}.e^{2x}.(x - 1)
ight|_{a}^{b} - \left. \ \frac{1}{4}.e^{2x}
ight|_{a}^{b}.

    Vậy từ đây ta có I_{1} = - \frac{1}{2} -
\left( \frac{1}{4}.e^{0} - \frac{1}{4}.e^{2} ight) = \frac{e^{2}}{4} -
\frac{3}{4}.

    I_{2} = \frac{1}{2}.e^{4} - \left(
\frac{1}{4}.e^{4} - \frac{1}{4}.e^{2} ight) = \frac{e^{4}}{4} +
\frac{e^{2}}{4}

    Suy ra I = I_{1} + I_{2} =
\frac{e^{4}}{4} + \frac{e^{2}}{2} - \frac{3}{4}

  • Câu 11: Vận dụng cao
    Xác định thể tích V

    Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1 như hình vẽ:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1)thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.?

    Hướng dẫn:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1) thì được thiết diện là một tam giác đều có cạnh bằng 2\sqrt{1 - x^{2}}

    Do đó, diện tích của thiết diện: S(x) =\frac{\left( 2\sqrt{1 - x^{2}} ight)^{2}\sqrt{3}}{4} = \sqrt{3}\left(1 - x^{2} ight)

    V = \int_{- 1}^{1}{S(x)dx} = \int_{-1}^{1}{\left\lbrack \sqrt{3}\left( 1 - x^{2} ight) ightbrackdx}

    = \sqrt{3}\left. \ \left( x -\frac{x^{3}}{3} ight) ight|_{- 1}^{1} =\frac{4\sqrt{3}}{3}

  • Câu 12: Vận dụng cao
    Tính thể tích chiếc lều

    Một học sinh làm mô hình chiếc lều vải mini có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc lều như hình vẽ bên dưới. Biết rằng OO' = 5cm, OA = 10cm, OB
= 20 cm, đường cong AB là một phần của parabol có đỉnh là điểm A. Tính thể tích của chiếc lều.

    Hướng dẫn:

    Kí hiệu hình vẽ như sau:

    Ta gọi thể tích của chiếc lều là V.

    Thể tích của khối trụ có bán kính đáy bằng OA = 10 cm và đường cao OO' = 5 cm là V_{1}.

    Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong ABvà hai trục tọa độ quanh trục OyV_{2}.

    Ta có V = V_{1} + V_{2}

    V_{1} = 5.10^{2}\pi = 500\pi \left( cm^{3} \right).

    Chọn hệ trục tọa độ như hình vẽ.

    Do parabol có đỉnh A nên nó có phương trình dạng (P):y = a(x -
10)^{2}.

    (P) qua điểm B(0; 2 0) nên a
= \frac{1}{5}. Do đó, (P):y =
\frac{1}{5}(x - 10)^{2}.

    Từ đó suy ra x = 10 - \sqrt{5y} (do x < 10).

    Suy ra V_{2} = \pi\int_{0}^{20}{\left( 10
- \sqrt{5y} \right)^{2}dy} = \pi\left( 3000 - \frac{8000}{3} \right) =
\frac{1000}{3}\pi \left( cm^{3}
\right).

    Do đó V = V_{1} + V_{2} =
\frac{1000}{3}\pi + 500\pi = \frac{2500}{3}\pi \left( cm^{3} \right).

  • Câu 13: Vận dụng
    Tính thể tích của vật thể

    Cho một mô hình 3 - D mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài 5\ (cm); khi cắt hình này bởi mặt phẳng vuông góc với đấy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parobol cho bởi công thứcy = 3 -
\frac{2}{5}x (cm), với x(cm) là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Tính thể tích (theo đơn vị cm^{3}) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị )

    Hướng dẫn:

    Xét một thiết diện parabol có chiều cao là h và độ dài đáy 2h và chọn hệ trục Oxy như hình vẽ trên.

    Parabol (P) có phương trình (P):y = ax^{2} + h,(a < 0)

    B(h;0) \in (P) \Leftrightarrow 0 = ah^{2} + h \Leftrightarrow a = - \frac{1}{h}(do\ h >
0)

    Diện tích S của thiết diện: S = \int_{- h}^{h}{\left( - \frac{1}{h}x^{2}
+ h \right)dx} = \frac{4h^{2}}{3}, h = 3 - \frac{2}{5}x

    \Rightarrow S(x) = \frac{4}{3}\left( 3 -
\frac{2}{5}x \right)^{2}

    Suy ra thể tích không gian bên trong của đường hầm mô hình: V = \int_{0}^{5}{S(x)dx} =
\int_{0}^{5}{\frac{4}{3}\left( 3 - \frac{2}{5}x \right)^{2}dx} \approx
28,888

    \Rightarrow V \approx 29\ \ \left(
cm^{3} \right)

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Cho đường cong (C):y = x^{3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây??

    Hướng dẫn:

    Ta có: y' = 3x^{2}A \in (C) \Rightarrow A\left( a;a^{3} ight);(a
> 0)

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3a^{2}(x - a) + a^{3}

    x^{3} = 3a^{2}(x - a) +
a^{3}

    \Leftrightarrow (x - a)^{2}(x + 2a) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = a \\
x = - 2a \\
\end{matrix} ight.

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)

    S = 27 \Leftrightarrow \int_{-
2a}^{a}\left| x^{3} - 3a^{2}(x - a) - a^{3} ight|dx = 27

    \Leftrightarrow \left| \int_{-
2a}^{a}\left( x^{3} - 3a^{2}x + 2a^{3} ight)dx ight| =
27

    \Leftrightarrow \left| \left. \ \left(
\frac{x^{4}}{4} - \frac{3a^{2}x^{2}}{2} + 2a^{3}x ight) ight|_{-
2a}^{a} ight| = 27

    \Leftrightarrow \frac{27}{4}a^{4} = 27
\Leftrightarrow \left\lbrack \begin{matrix}
a = \sqrt{2}(tm) \\
a = - \sqrt{2}(ktm) \\
\end{matrix} ight.

    Vậy a = \sqrt{2} \in \left( 1;\frac{3}{2}
ight)

  • Câu 15: Thông hiểu
    Tìm diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1};x = 1 và trục hoành?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó diện tích hình phẳng theo yêu cầu bài toán là:

    S = \int_{0}^{1}{x\sqrt{x^{2} + 1}dx} =
\frac{1}{2}\int_{0}^{1}{\sqrt{x^{2} + 1}d\left( x^{2} + 1
ight)}

    = \frac{1}{2}\left. \ \left( x^{2} + 1
ight)^{\frac{3}{2}} ight|_{0}^{1} = \frac{2\sqrt{2} -
1}{3}.

  • Câu 16: Thông hiểu
    Tính thể tích chiếc ly

    Một ly rượu thủy tinh có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của ly (bổ dọc cốc thành 2 phần bằng nhau) là một đường Parabol. Tính thể tích tối đa mà ly có thể chứa được (làm tròn 2 chữ số thập phân)

    Hướng dẫn:

    Parabol có phương trình y =
\frac{5}{8}x^{2} \Leftrightarrow x^{2} = \frac{8}{5}y

    Thể tích tối đa cốc: V =
\pi\int_{0}^{10}\left( \frac{8}{5}y \right)dy \approx
251,33.

  • Câu 17: Vận dụng
    Tính tích phân

    Cho hai hàm số f(x) = ax^{3} + bx +
c;g(x) = bx^{3} + ax + c;(a > 0) có đồ thị như hình vẽ:

    Gọi S_{1};S_{2} là diện tích hình phẳng được gạch trong hình vẽ. Khi S_{1} + S_{2} = 3 thì \int_{0}^{1}{f(x)dx} bằng bao nhiêu?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    (a - b)x^{3} + (b - a)x = 0

    \Leftrightarrow (a - b)\left( x^{3} - x
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 0 \\
\end{matrix} ight.

    Ký hiệu S_{3} là diện tích hình phẳng như hình vẽ:

    Ta có:

    S_{1} = \int_{- 1}^{0}{\left\lbrack f(x)
- g(x) ightbrack dx} = (a - b)\int_{- 1}^{0}{\left( x^{3} - x
ight)dx} = \frac{1}{4}(a - b)

    S_{2} = - \int_{- 1}^{0}{g(x)dx} = -
\int_{- 1}^{0}{\left( bx^{3} + ax + c ight)dx} = - \left( \frac{b}{4}
+ \frac{a}{2} + c ight)

    Vì vậy S_{1} + S_{2} = 3 \Leftrightarrow
\frac{1}{4}(a - b) - \left( \frac{b}{4} + \frac{a}{2} + c ight) =
3

    \Leftrightarrow a + 2b + 4c = -
12

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{1}{\left( ax^{3} + bx + c ight)dx} = \frac{a}{4} +
\frac{b}{2} + c = \frac{a + 2b + 4c}{4} = - 3

  • Câu 18: Vận dụng cao
    Tính tỉ số hai cạnh

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} bằng

    Hướng dẫn:

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình Parabol có dạng y =
a.x^{2} (P).

    (P) đi qua điểm có tọa độ ( - 6; - 18) suy ra: - 18 = a.( - 6)^{2} \Leftrightarrow a = -
\frac{1}{2}

    \Rightarrow (P):y = -
\frac{1}{2}x^{2}.

    Từ hình vẽ ta có: \frac{AB}{CD} =
\frac{x_{1}}{x_{2}}.

    Diện tích hình phẳng giới bạn bởi Parabol và đường thẳng AB:y = - \frac{1}{2}x_{1}^{2}

    S_{1} = 2\int_{0}^{x_{1}}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}x_{1}^{2} \right) \right\rbrack
dx}\left. \  = 2\left( - \frac{1}{2}.\frac{x^{3}}{3} +
\frac{1}{2}x_{1}^{2}x \right) \right|_{0}^{x_{1}} =
\frac{2}{3}x_{1}^{3}.

    Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng CD y = -
\frac{1}{2}x_{2}^{2}

    S_{2} = 2\int_{0}^{x_{2}}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}x_{2}^{2} \right) \right\rbrack
dx}\left. \  = 2\left( - \frac{1}{2}.\frac{x^{3}}{3} +
\frac{1}{2}x_{2}^{2}x \right) \right|_{0}^{x_{2}} =
\frac{2}{3}x_{2}^{3}

    Từ giả thiết suy ra S_{2} = 2S_{1}
\Leftrightarrow x_{2}^{3} = 2x_{1}^{3} \Leftrightarrow
\frac{x_{1}}{x_{2}} = \frac{1}{\sqrt[3]{2}}.

    Vậy \frac{AB}{CD} = \frac{x_{1}}{x_{2}} =
\frac{1}{\sqrt[3]{2}}.

  • Câu 19: Thông hiểu
    Tính thể tích khối tròn xoay

    Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2xy = - x^{2} quay quanh trục Ox.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    x^{2} - 2x = - x^{2} \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Khi đó thể tích khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đồ thị hàm số

    y = x^{2} - 2x;y = - x^{2} quay quanh trục Ox được tính bởi công thức

    V = \pi\int_{0}^{1}\left| \left( x^{2} -
2x ight)^{2} - \left( - x^{2} ight)^{2} ight|dx

    Ta thấy trên \lbrack 0;1brack thì \left( - x^{2} ight)^{2} \leq \left(
x^{2} - 2x ight)^{2}, do vậy ta có công thức

    V = \pi\int_{0}^{1}\left\lbrack - x^{4} +
\left( x^{4} - 4x^{3} + 4x^{2} ight) ightbrack dx

    = \pi\int_{0}^{1}\left( - 4x^{3} + 4x^{2}
ight)dx = \left. \ \pi.\left( - x^{4} + \frac{4}{3}x^{3} ight)
ight|_{0}^{1} = \frac{\pi}{3} (đvtt)

  • Câu 20: Thông hiểu
    Tính diện tích hình phẳng (H)

    Cho hàm y = f(x) có đạo hàm liên tục trên \lbrack 1;3brack. Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = f'(x) và đường thẳng y = x (phần gạch chéo trong hình vẽ):

    Diện tích hình (H) bằng:

    Hướng dẫn:

    Diện tích phần gạch chéo là:

    S = \int_{1}^{2}{\left\lbrack f'(x)
- x ightbrack dx} - \int_{2}^{3}{\left\lbrack f'(x) - x
ightbrack dx}

    = \left. \ \left\lbrack f(x) -
\frac{x^{2}}{2} ightbrack ight|_{1}^{2} - \left. \ \left\lbrack
f(x) - \frac{x^{2}}{2} ightbrack ight|_{2}^{3}

    = 2f(2) - f(1) - f(3) + 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo