Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 13 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính thể tích chiếc lều

    Một học sinh làm mô hình chiếc lều vải mini có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc lều như hình vẽ bên dưới. Biết rằng OO' = 5cm, OA = 10cm, OB
= 20 cm, đường cong AB là một phần của parabol có đỉnh là điểm A. Tính thể tích của chiếc lều.

    Hướng dẫn:

    Kí hiệu hình vẽ như sau:

    Ta gọi thể tích của chiếc lều là V.

    Thể tích của khối trụ có bán kính đáy bằng OA = 10 cm và đường cao OO' = 5 cm là V_{1}.

    Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong ABvà hai trục tọa độ quanh trục OyV_{2}.

    Ta có V = V_{1} + V_{2}

    V_{1} = 5.10^{2}\pi = 500\pi \left( cm^{3} \right).

    Chọn hệ trục tọa độ như hình vẽ.

    Do parabol có đỉnh A nên nó có phương trình dạng (P):y = a(x -
10)^{2}.

    (P) qua điểm B(0; 2 0) nên a
= \frac{1}{5}. Do đó, (P):y =
\frac{1}{5}(x - 10)^{2}.

    Từ đó suy ra x = 10 - \sqrt{5y} (do x < 10).

    Suy ra V_{2} = \pi\int_{0}^{20}{\left( 10
- \sqrt{5y} \right)^{2}dy} = \pi\left( 3000 - \frac{8000}{3} \right) =
\frac{1000}{3}\pi \left( cm^{3}
\right).

    Do đó V = V_{1} + V_{2} =
\frac{1000}{3}\pi + 500\pi = \frac{2500}{3}\pi \left( cm^{3} \right).

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?

    Đáp án: 3200 m^{2}

    Đáp án là:

    Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?

    Đáp án: 3200 m^{2}

    Gắn hệ trục tọa độ Oxy như hình vẽ:

    Ta có: A(30;0),B(0;20)

    \Rightarrow (P):y = \frac{- 1}{45}x^{2}
+ 20

    Khi đó diện tích phần parabol là:

    4\int_{0}^{30}{\left( \frac{-
1}{45}x^{2} + 20 ight)dx} = 1600\left( m^{2} ight)

    Vậy diện tích toàn phần của sân chơi là: 60.80 - 1600 = 3200\left( m^{2}
ight)

  • Câu 3: Vận dụng
    Tính thể tích nước

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng cao
    Tính thể tích V

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Gợi ý:

    Gắn hệ trục tọa độ mới.

    Cho hai hàm số y = f(x), y = g(x) liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số y = f(x), y = g(x) và hai đường thẳng x = a, x = b khi quay quanh trục Ox là V = \pi\int_{a}^{b}{\left|f^{2}(x) - g^{2}(x) ight|dx}

    Hướng dẫn:

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 5: Thông hiểu
    Tìm giá trị tham số a

    Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị y = x^{2} - ax với trục hoành (a eq 0). Quay hình (H) xung quanh trục hoành ta thu được khối tròn xoay có thể tích V =
\frac{16\pi}{15}. Tìm a?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    x^{2} - ax = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = a \\
\end{matrix} ight.

    Trường hợp 1: Với a > 0 thì thể tích khối tròn xoay là:

    V = \pi\int_{0}^{a}{\left( x^{2} - ax
ight)^{2}dx} = \pi\left. \ \left( \frac{x^{5}}{5} - \frac{ax^{4}}{2} +
\frac{a^{2}x^{3}}{3} ight) ight|_{0}^{a} =
\frac{a^{5}\pi}{30}

    \Rightarrow \frac{a^{5}\pi}{30} =
\frac{16\pi}{15} \Rightarrow a = 2

    Trường hợp 2: Với a < 0 thì thể tích khối tròn xoay là:

    V = \pi\int_{a}^{0}{\left( x^{2} - ax
ight)^{2}dx} = \pi\left. \ \left( \frac{x^{5}}{5} - \frac{ax^{4}}{2} +
\frac{a^{2}x^{3}}{3} ight) ight|_{a}^{0} = -
\frac{a^{5}\pi}{30}

    \Rightarrow - \frac{a^{5}\pi}{30} =
\frac{16\pi}{15} \Rightarrow a = - 2

    Vậy a = \pm 2.

  • Câu 6: Vận dụng cao
    Tìm giá trị lớn nhất của diện tích hình phẳng

    Cho parabol (P):y = x^{2} và hai điểm A;B thuộc (P) sao cho AB = 2. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi A\left( a;a^{2} ight)(P):y = x^{2} là hai điểm thuộc (P) sao cho AB = 2.

    Không mất tính tổng quát giả sử a < b.

    Theo giả thiết ta có AB = 2 nên

    (b - a)^{2} + \left( b^{2} - a^{2}ight)^{2} = 4

    \Leftrightarrow (b - a)^{2}\left\lbrack1 + (b + a)^{2} ightbrack = 4

    Phương trình đường thẳng đi qua hai điểm A và B là y = (b + a)x - ab

    Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:

    S = \int_{a}^{b}{\left\lbrack (a + b)x -ab - x^{2} ightbrack dx}

    = \left. \ \left\lbrack (a +b)\frac{x^{2}}{2} - abx - \frac{x^{3}}{3} ightbrack ight|_{a}^{b}= \frac{(b - a)^{3}}{6}

    Mặt khác (b - a)^{2}\left\lbrack 1 + (b +a)^{2} ightbrack = 4 nên |b -a| \leq 2 do 1 + (b + a)^{2} \geq1

    Suy ra S = \frac{(b - a)^{3}}{6} \leq\frac{2^{3}}{6}

    Vậy S_{\max} = \frac{4}{3} dấu bằng xảy ra khi và chỉ khi a = − b = ±1.

  • Câu 7: Vận dụng
    Tính tích phân

    Cho hai hàm số f(x) = ax^{3} + bx +
c;g(x) = bx^{3} + ax + c;(a > 0) có đồ thị như hình vẽ:

    Gọi S_{1};S_{2} là diện tích hình phẳng được gạch trong hình vẽ. Khi S_{1} + S_{2} = 3 thì \int_{0}^{1}{f(x)dx} bằng bao nhiêu?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    (a - b)x^{3} + (b - a)x = 0

    \Leftrightarrow (a - b)\left( x^{3} - x
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 0 \\
\end{matrix} ight.

    Ký hiệu S_{3} là diện tích hình phẳng như hình vẽ:

    Ta có:

    S_{1} = \int_{- 1}^{0}{\left\lbrack f(x)
- g(x) ightbrack dx} = (a - b)\int_{- 1}^{0}{\left( x^{3} - x
ight)dx} = \frac{1}{4}(a - b)

    S_{2} = - \int_{- 1}^{0}{g(x)dx} = -
\int_{- 1}^{0}{\left( bx^{3} + ax + c ight)dx} = - \left( \frac{b}{4}
+ \frac{a}{2} + c ight)

    Vì vậy S_{1} + S_{2} = 3 \Leftrightarrow
\frac{1}{4}(a - b) - \left( \frac{b}{4} + \frac{a}{2} + c ight) =
3

    \Leftrightarrow a + 2b + 4c = -
12

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{1}{\left( ax^{3} + bx + c ight)dx} = \frac{a}{4} +
\frac{b}{2} + c = \frac{a + 2b + 4c}{4} = - 3

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu
    Tìm diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1};x = 1 và trục hoành?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó diện tích hình phẳng theo yêu cầu bài toán là:

    S = \int_{0}^{1}{x\sqrt{x^{2} + 1}dx} =
\frac{1}{2}\int_{0}^{1}{\sqrt{x^{2} + 1}d\left( x^{2} + 1
ight)}

    = \frac{1}{2}\left. \ \left( x^{2} + 1
ight)^{\frac{3}{2}} ight|_{0}^{1} = \frac{2\sqrt{2} -
1}{3}.

  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Cho đường cong (C):y = x^{3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây??

    Hướng dẫn:

    Ta có: y' = 3x^{2}A \in (C) \Rightarrow A\left( a;a^{3} ight);(a
> 0)

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3a^{2}(x - a) + a^{3}

    x^{3} = 3a^{2}(x - a) +
a^{3}

    \Leftrightarrow (x - a)^{2}(x + 2a) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = a \\
x = - 2a \\
\end{matrix} ight.

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)

    S = 27 \Leftrightarrow \int_{-
2a}^{a}\left| x^{3} - 3a^{2}(x - a) - a^{3} ight|dx = 27

    \Leftrightarrow \left| \int_{-
2a}^{a}\left( x^{3} - 3a^{2}x + 2a^{3} ight)dx ight| =
27

    \Leftrightarrow \left| \left. \ \left(
\frac{x^{4}}{4} - \frac{3a^{2}x^{2}}{2} + 2a^{3}x ight) ight|_{-
2a}^{a} ight| = 27

    \Leftrightarrow \frac{27}{4}a^{4} = 27
\Leftrightarrow \left\lbrack \begin{matrix}
a = \sqrt{2}(tm) \\
a = - \sqrt{2}(ktm) \\
\end{matrix} ight.

    Vậy a = \sqrt{2} \in \left( 1;\frac{3}{2}
ight)

  • Câu 11: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng /m^{2}, biết MN = 4\ m,MQ = 6\ m. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.

    Đáp án: 3,7||3.7

    Đáp án là:

    Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng /m^{2}, biết MN = 4\ m,MQ = 6\ m. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.

    Đáp án: 3,7||3.7

    Gắn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình parabol có dạng (P):y =
ax^{2} + bx + c.

    Ta có:

    \left\{ \begin{matrix}
A( - 4;0) \in (P) \\
B(4;0) \in (P) \\
N(2;6) \in (P) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
16a - 4b + c = 0 \\
16a + 4b + c = 0 \\
4a + 2b + c = 6 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{2} \\
b = 0 \\
c = 8 \\
\end{matrix} ight.\  ight.\  ight.

    \Rightarrow (P):y = - \frac{1}{2}x^{2} +
8

    Diện tích để trang trí hoa là:

    S = \int_{- 4}^{4}{\left( -
\frac{1}{2}x^{2} + 8 ight)dx} - S_{MNPQ} = \frac{128}{3} - 4.6 =
\frac{56}{3}.

    Vậy số tiền để mua hoa trang trí: \frac{56}{3} \cdot 200000 \approx 3733300 \approx
3,7 triệu.

  • Câu 12: Vận dụng cao
    Ghi đáp án vào ô trống

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} =
\frac{1}{\sqrt[n]{a}} , tính n +
a?

    Đáp án: 5

    Đáp án là:

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} =
\frac{1}{\sqrt[n]{a}} , tính n +
a?

    Đáp án: 5

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình Parabol có dạng y = a.x^{2}\
\ \ (P).

    Do (P) đi qua điểm có tọa độ ( - 6; - 18) suy ra: - 18 = a.( - 6)^{2} \Leftrightarrow a = -
\frac{1}{2} \Rightarrow (P):y = -
\frac{1}{2}x^{2}.

    Từ hình vẽ ta có: \frac{AB}{CD} =
\frac{b}{d}.

    Diện tích hình phẳng giới bạn bởi Parabol (P):y = - \frac{1}{2}x^{2} và đường thẳng AB:y = - \frac{1}{2}b^{2} là:

    S_{1} = 2\int_{0}^{b}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}b^{2} ight) ightbrack
dx}\left.= 2\left( - \frac{1}{2}.\frac{x^{3}}{3} + \frac{1}{2}b^{2}x
ight) ight|_{0}^{b} = \frac{2}{3}b^{3}.

    Diện tích hình phẳng giới hạn bởi Parabol (P):y = - \frac{1}{2}x^{2} và đường thẳng CD :y =
- \frac{1}{2}d^{2} là :

    S_{2} = 2\int_{0}^{d}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}d^{2} ight) ightbrack
dx}\left. \  = 2\left( - \frac{1}{2}.\frac{x^{3}}{3} + \frac{1}{2}d^{2}x
ight) ight|_{0}^{d} = \frac{2}{3}d^{3}

    Từ giả thiết suy ra S_{2} = 2S_{1}
\Leftrightarrow d^{3} = 2b^{3} \Leftrightarrow \frac{b}{d} =
\frac{1}{\sqrt[3]{2}}.

    Do đó \frac{AB}{CD} = \frac{b}{d} =
\frac{1}{\sqrt[3]{2}} \Rightarrow n = 3;a = 2 nên n + a = 5.

  • Câu 13: Vận dụng
    Tính số tiền thu được

    Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn 28\ cm, trục nhỏ 25\ cm. Biết cứ 1000\ cm^{3} dưa hấu sẽ làm được cốc sinh tố giá 20000 đồng. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.

    Hướng dẫn:

    Đường elip có trục lớn 28\ cm, trục nhỏ 25\ cm có phương trình:

    \frac{x^{2}}{14^{2}} +
\frac{y^{2}}{\left( \frac{25}{2} \right)^{2}} = 1 \Leftrightarrow y^{2}
= \left( \frac{25}{2} \right)^{2}\left( 1 - \frac{x^{2}}{14^{2}}
\right)

    \Leftrightarrow y = \pm
\frac{25}{2}\sqrt{1 - \frac{x^{2}}{14^{2}}}.

    Do đó thể tích quả dưa là

    V = \pi\int_{- 14}^{14}{\left(\frac{25}{2}\sqrt{1 - \frac{x^{2}}{14^{2}}} \right)^{2}dx}= \pi\left(\frac{25}{2} \right)^{2}\int_{- 14}^{14}{\left( 1 - \frac{x^{2}}{14^{2}}\right)^{2}dx}

    = \pi\left( \frac{25}{2}\right)^{2}.\left. \ \left( x - \frac{x^{3}}{3.14^{2}} \right)\right|_{- 14}^{14}= \pi\left( \frac{25}{2} \right)^{2}.\frac{56}{3} =\frac{8750\pi}{3}\ cm^{3}.

    Do đó tiền bán nước thu được là \frac{8750\pi.20000}{3.1000} \approx 183259đồng.

  • Câu 14: Vận dụng
    Ghi đáp án đúng vào ô trống

    Hình elip được ứng dụng nhiều trong thực tiễn, đặc biệt là kiến trúc, xây dựng, thiết bị nội thất,... Mặt trong (lọt lòng) và ngoài (phủ bì) của một bồn rửa (lavabo) bằng sứ có hình dạng là một nửa khối tròn xoay khi quay quanh một trục của 2 elip có chung các trục đối xứng (hình minh họa). Thông số kĩ thuật mặt trên của bồn rửa: dài x rộng là 660 \times 380mm (phủ bì) và elip (lọt lòng) có trục lớn, trục nhỏ ít hơn elip phủ bì một khoảng 40 mm. Tính thể tích chứa nước của bồn rửa (đơn vị: lít) (làm tròn kết quả đến hàng phần mười).

    Đáp án: 18,8

    Đáp án là:

    Hình elip được ứng dụng nhiều trong thực tiễn, đặc biệt là kiến trúc, xây dựng, thiết bị nội thất,... Mặt trong (lọt lòng) và ngoài (phủ bì) của một bồn rửa (lavabo) bằng sứ có hình dạng là một nửa khối tròn xoay khi quay quanh một trục của 2 elip có chung các trục đối xứng (hình minh họa). Thông số kĩ thuật mặt trên của bồn rửa: dài x rộng là 660 \times 380mm (phủ bì) và elip (lọt lòng) có trục lớn, trục nhỏ ít hơn elip phủ bì một khoảng 40 mm. Tính thể tích chứa nước của bồn rửa (đơn vị: lít) (làm tròn kết quả đến hàng phần mười).

    Đáp án: 18,8

    Chọn hệ trục tọa độ Oxy thích hợp với đơn vị trên trục là decimet.

    Phương trình elip lọt lòng: (E):\frac{x^{2}}{3,1^{2}} + \frac{y^{2}}{1,7^{2}}
= 1 \Leftrightarrow y = \pm 1,7\sqrt{1 -
\frac{x^{2}}{3,1^{2}}}.

    Thể tích chứa nước của bồn rửa: V =
\frac{1}{2}.\pi\int_{- 3,1}^{3,1}{1,7^{2}\left( 1 -
\frac{x^{2}}{3,1^{2}} ight)dx} \approx 18,8 lít.

  • Câu 15: Thông hiểu
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi nhánh đường cong y = x^{2} với x \geq 0, đường thẳng y = 2 - x và trục hoành bằng

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    x^{2} = 2 - x \Leftrightarrow x^{2} + x
- 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2(ktm) \\
\end{matrix} ight.

    Ta có \Rightarrow S = \int_{0}^{1}{\left|
x^{2} - (2 - x) ight|d_{x}} = \frac{7}{6}

  • Câu 16: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Đáp án là:

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Cả hai bên cầu có tất cả 2.10 =
20 nhịp cầu.

    Chọn hệ trục tọa độ như hình vẽ với gốc O(0;0) là chân cầu, đỉnh I(25;2), điểm A(50;0)

    Gọi Parabol phía trên có phương trình: \left( P_{1} ight):y_{1} = ax^{2} + bx + c =
ax^{2} + bx (vì O \in \left( P_{1}
ight))

    \Rightarrow y_{2} = ax^{2} + bx -
\frac{1}{5} là phương trình parabol phía dưới

    (Vì bề dày nhịp cầu là 20cm =
\frac{1}{5}m)

    Ta có I,A \in \left( P_{1} ight)
\Rightarrow \left\{ \begin{matrix}
25^{2}a + 25b = 2 \\
50^{2}a + 50b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{625} \\
b = \frac{4}{25} \\
\end{matrix} ight.

    \Rightarrow \left( P_{1} ight):y_{1} =
- \frac{2}{625}x^{2} + \frac{4}{25}x \Rightarrow \left( P_{2} ight):\
\ \ y_{2} = - \frac{2}{625}x^{2} + \frac{4}{25}x -
\frac{1}{5}

    Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi y_{1};y_{2} và trục Ox nên ta có:

    S = 2\left( \int_{0}^{0,2}{\left( -
\frac{2}{625}x^{2} + \frac{4}{25}x ight)dx +
\int_{0,2}^{25}{\frac{1}{5}dx}} ight) \approx 9,926m^{2}

    Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là S.0,2 \approx 1,985m^{3}.

    Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là V = 20.S.0,2 \approx
40m^{3}

  • Câu 17: Vận dụng
    Ghi đáp án chính xác vào ô trống

    Chuẩn bị cho lễ Giáng Sinh, bạn Lan đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. Biết rằng OO' =
7cm, OA = 8cm, OB = 16 cm, đường cong AB là một phần của parabol có đỉnh là điểmA. Thể tích của chiếc mũ. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 1944.

    Đáp án là:

    Chuẩn bị cho lễ Giáng Sinh, bạn Lan đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. Biết rằng OO' =
7cm, OA = 8cm, OB = 16 cm, đường cong AB là một phần của parabol có đỉnh là điểmA. Thể tích của chiếc mũ. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 1944.

    Kí hiệu tọa độ các điểm như hình vẽ:

    Ta gọi thể tích của chiếc mũ là V.

    Thể tích của khối trụ có bán kính đáy bằng OA = 8 cm và đường cao OO' = 7 cm là V_{1}.

    Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong ABvà hai trục tọa độ quanh trục OyV_{2}.

    Ta có V = V_{1} + V_{2}

    V_{1} = 7.8^{2}\pi = 448\pi \left( cm^{3} ight).

    Chọn hệ trục tọa độ như hình vẽ.

    Do parabol có đỉnh A nên nó có phương trình dạng (P):y = a(x -
8)^{2}.

    (P) qua điểm B(0;16) nên a
= \frac{1}{4}.

    Do đó, (P):y = \frac{1}{4}(x -
8)^{2}.

    Từ đó suy ra x = 8 -
2\sqrt{y} (do x <
8).

    Suy ra V_{2} = \pi\int_{0}^{16}{\left( 8
- 2\sqrt{y} ight)^{2}dy} = \frac{512}{3}\pi \left( cm^{3} ight).

    Do đó V = V_{1} + V_{2} =
\frac{512}{3}\pi + 448\pi = \frac{1856}{3}\pi \approx 1944 \left( cm^{3} ight).

  • Câu 18: Vận dụng
    Ghi đáp án đúng vào chỗ trống

    Một khối cầu có bán kính là 6\
dm, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng 3\ dm để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu dm^{3}(làm tròn đến hàng đơn vị)

    Đáp án: 622

    Đáp án là:

    Một khối cầu có bán kính là 6\
dm, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng 3\ dm để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu dm^{3}(làm tròn đến hàng đơn vị)

    Đáp án: 622

    Trên hệ trục tọa độ Oxy, xét đường tròn (C): (x - 6)^{2} + y^{2} = \ 36

    Nếu cho nửa trên trục Ox của (C) quay quanh trục Ox ta được mặt cầu có bán kính bằng 6.

    Nếu cho hình phẳng (H) giới hạn bởi nửa trên trục Ox của (C), trục Ox, hai đường thẳng x = 0;\ x = 3 quay xung quanh Ox ta sẽ được khối tròn xoay chính là 1 phần cắt đi của khối cầu trong đề bài.

    Ta có (x - 6)^{2} + y^{2} = \ 36
\Leftrightarrow y = \pm \sqrt{36 - (x - 6)^{2}}

    Suy ra nửa trên trục Ox của (C) có phương trình y = \sqrt{36 - (x - 6)^{2}} = \sqrt{12x -
x^{2}}

    Thể tích vật thể tròn xoay khi cho (H) quay quanh OxV_{1} =
\pi\int_{0}^{3}\left( 12x - x^{2} ight) = 45\pi.

    Thể tích khối cầu là V_{2} =
\frac{4}{3}\pi.6^{3} = 288\pi.

    Thể tích cần tìm là V = V_{2} - 2V_{1} =
198\pi \approx 622.

  • Câu 19: Thông hiểu
    Xác định giá trị tham số k

    Cho hình thang cong (H) giới hạn bởi các đường y = \frac{1}{x};y = 0;x = 1;x
= 5. Đường thẳng x = k;1 < k
< 5 chia (H) thành hai phần có diện tích S_{1}S_{2} (hình vẽ bên).

    Tính giá trị k để S_{1} = 2S_{2}?

    Hướng dẫn:

    Ta có: \frac{1}{x} > 0;x >
1 do đó ta được:

    S_{1} = \int_{1}^{k}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{1}^{k} = \ln k

    S_{2} = \int_{k}^{5}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{k}^{5} = ln5 - \ln k

    Theo bài ra ta có:

    S_{1} = 2S_{2}

    \Leftrightarrow \ln k = 2\left( ln5 - \ln
k ight) \Leftrightarrow k = \sqrt[3]{25}.

  • Câu 20: Vận dụng
    Tìm giá trị tham số k

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = ax^{3} (a
> 0), trục hoành và hai đường thẳng x = - 1, x =
k (k > 0) bằng \frac{15a}{4}. Tìm k.

    Hướng dẫn:

    Kí hiệu đồ thị hàm số như sau:

    Ta thấy hàm số y = ax^{3};(a >
0) luôn đồng biến trên \mathbb{R} và có tâm đối xứng là O(0;0). Hình vẽ minh họa ở bên ta thấy với x \in ( - 1;0) thì ax^{3} < 0, với x \in (0;k) thì ax^{3} > 0.

    Vậy S = \int_{- 1}^{k}{\left| ax^{3}
ight|dx = \frac{15a}{4}}

    \Leftrightarrow \int_{- 1}^{0}{\left(
ax^{3} ight)dx} + \int_{0}^{k}{\left( ax^{3} ight)dx} =
\frac{15a}{4}

    \Leftrightarrow \frac{- ax^{4}}{4}|_{-
1}^{0} + \frac{ax^{4}}{4}|_{0}^{k} = \frac{15a}{4};(k >
0)

    \Leftrightarrow \frac{a}{4} +
\frac{ak^{4}}{4} = \frac{15a}{414} \Leftrightarrow k^{4} = 14
\Leftrightarrow k = \sqrt[4]{14}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo