Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 19 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính xác suất

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là 18\%15\%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?

    Hướng dẫn:

    Gọi A_{1};A_{2} lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

    Nên 1 2 A A, là hệ biến cố đầy đủ.

    Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = 52\% = 0,52 \\
P\left( A_{2} ight) = 1 - 0,52 = 0,48 \\
P\left( B|A_{1} ight) = 18\% = 0,18 \\
P\left( B|A_{2} ight) = 15\% = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) = 0,18.0,52 + 0,15.0,48
= \frac{207}{1250} = 0,1656

    Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)} = \frac{0,15.0,48}{0,1656}
= \frac{10}{23}

  • Câu 2: Thông hiểu
    Chọn đáp án chính xác

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A. Tính xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán". (Làm tròn đến hàng phần trăm).

    Hướng dẫn:

    Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là 23 - 8 = 15.

    Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là P = \frac{15}{23} \approx
0,65

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Một cuộc thi năng lực có 36 bộ câu hỏi, trơng đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên một bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên một bộ câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng:

    Hướng dẫn:

    Xét các biến cố:

    A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên"

    B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".

    Khi đó P(A) = \frac{20}{36} = \frac{5}{9}
\Rightarrow P\left( \overline{A} ight) = 1 - \frac{5}{9} =
\frac{4}{9}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội

    \Rightarrow P\left( B|A ight) =
\frac{16}{35}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội

    \Rightarrow P\left( B|\overline{A}
ight) = \frac{15}{35}

    Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) =
\frac{5}{9}.\frac{16}{35} + \frac{4}{9}.\frac{15}{35} =
\frac{4}{9}

  • Câu 4: Thông hiểu
    Tính xác suất theo yêu cầu

    Có hai chuồng thỏ. Chuồng I có 5 con thỏ đen và 10 con thỏ trắng. Chuồng II có 7 con thỏ đen và 3 con thỏ trắng. Trước tiên, từ chuồng II lấy ra ngẫu nhiên 1 con thỏ rồi cho vào chuồng I. Sau đó, từ chuồng I lấy ra ngẫu nhiên 1 con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng. (Kết quả làm tròn đến chữ số thập phân thứ 2).

    Hướng dẫn:

    Xét A:“Con thỏ được lấy ra từ chuồng II để cho vào chuồng I là con thỏ trắng”.

    Và B: “Con thỏ được lấy ra từ chuồng I là con thỏ trắng”.

    Tính P(A): Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I: n(\Omega) =
C_{10}^{1};n(A) = C_{3}^{1} \Rightarrow P(A) = \frac{3}{10}

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{3}{10} = \frac{7}{10}

    Tính P\left( B|A ight): Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I.

    Tức là có 5 con thỏ đen và 11 con thỏ trắng ở trong chuồng I

    Tương tự ta có: P\left( B|A ight) =
\frac{11}{16}

    Tính P\left( B|\overline{A}
ight): Đây là để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ đen từ chuồng II rồi cho vào chuồng I

    Tức là có 6 con thỏ đen và 10 con thỏ trắng ở trong chuồng I. Tương tự như trên ta có: P\left( B|\overline{A}
ight) = \frac{10}{16}.

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) =
\frac{3}{10}.\frac{11}{16} + \frac{7}{10}.\frac{10}{16} =
\frac{103}{106}

  • Câu 5: Vận dụng
    Tính giá trị của biểu thức

    Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng. Biết xác suất để ít nhất 1 lần lấy được bóng đèn loại I bằng \frac{a}{b}(với a,blà các số nguyên dương và \frac{a}{b} là phân số tối giản). Tính a - b.

    Hướng dẫn:

    Xét các biến cố:

    A: "Lần thứ nhất lấy được bóng đèn loại II";

    B: "Lần thứ hai lấy được bóng đèn loại II".

    Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: P(A) = \frac{2}{20} = \frac{1}{10}.

    Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp.

    Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II, là P(B \mid A) = \frac{1}{19}.

    Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:

    P(C) = P(A \cap B) = P(A) \cdot P(B \mid
A) = \frac{1}{10} \cdot \frac{1}{19} = \frac{1}{190}.

    Vậy để ít nhất 1 lần lấy được bóng đèn loại I là:

    P\left(
\overline{C} \right) = 1 - P(C) = 1 - \frac{1}{190} =
\frac{189}{190}.

    Suy ra a = 189,b = 190 \Rightarrow a - b
= - 1.

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hai biến cố ABP(A) =
0,6, P(B) = 0,4, P(AB) = 0,2.

    a) P\left( \overline{A} \right) =
0,6.Sai||Đúng

    b) P\left( \overline{B} \right) =
0,6.Đúng|Sai

    c) P\left( A|B \right) = 0,4. Sai||Đúng

    d) P\left( B|A \right) =
\frac{1}{3}. Đúng|Sai

    Đáp án là:

    Cho hai biến cố ABP(A) =
0,6, P(B) = 0,4, P(AB) = 0,2.

    a) P\left( \overline{A} \right) =
0,6.Sai||Đúng

    b) P\left( \overline{B} \right) =
0,6.Đúng|Sai

    c) P\left( A|B \right) = 0,4. Sai||Đúng

    d) P\left( B|A \right) =
\frac{1}{3}. Đúng|Sai

    a) SP\left( \overline{A} \right) = 1 -
0,6 = 0,4 \neq 0,6.

    b) Đ P\left( \overline{B} \right) = 1 -
0,4 = 0,6.

    c) s P\left( A|B \right) =
\frac{P(AB)}{P(B)} = \frac{0,2}{0,4} = 0,5 \neq 0,4.

    d) Đ P\left( B|A \right) =
\frac{P(AB)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3}.

  • Câu 7: Thông hiểu
    Chọn phương án thích hợp

    Kết quả khảo sát tại một xã cho thấy có 25\% cư dân hút thuốc lá. Tỉ lệ cư dân thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp trong số những người hút thuốc lá và không hút thuốc lá lần lượt là 60\%25\%. Nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là bao nhiêu?

    Hướng dẫn:

    Giả sử ta gặp một cư dân của xã, gọi A là biến cố "Người đó có hút thuốc lá" và B là biến cố "Người đó thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp". Ta có sơ đồ hình cây sau:

    Ảnh có chứa văn bản, ảnh chụp màn hình, Phông chữ, biểu đồMô tả được tạo tự động

    Ta có

    P(B) = P(A) \cdot P(B \mid A) +P(\overline{A}) \cdot P(B \mid \overline{A})= 0,15 + 0,1875 =0,3375.

    Theo công thức Bayes, ta có:

    P(A \mid B) =
\frac{P(A)P(B \mid A)}{P(B)} = \frac{0,15}{0,3375} =
\frac{4}{9}.

    Vậy nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là \frac{4}{9}.

  • Câu 8: Thông hiểu
    Tính xác suất để chẩn đoán có bệnh

    Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là 0,8. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán có bệnh?

    Hướng dẫn:

    Gọi A là "người đến khám có bệnh" thì A, \overline{A} tạo thành hệ đầy đủ

    Gọi B là "Chẩn đoán có bệnh".

    Ta có P(A | B) = 0.9, P(A|B) = 0.5.

    Tìm P(B) từ:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{P(A) - P\left( A|\overline{B} ight).P\left( \overline{B}
ight)}{P(B)}

    \Rightarrow P\left( A|B ight) =
\frac{P(A) - P\left( A|\overline{B} ight).\left\lbrack 1 - P(B)
ightbrack}{P(B)}

    \Rightarrow 0,9 = \frac{0,8 -
0,5\left\lbrack 1 - P(B) ightbrack}{P(B)}

    \Leftrightarrow P(B) = 0,75

  • Câu 9: Nhận biết
    Tính xác suất P

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Hướng dẫn:

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 10: Vận dụng
    Xét tính đúng sai của các nhận định

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A: “Cây phát triển bình thường trên lô đất M”;

    B: “Cây phát triển bình thường trên lô đất N”.

    a) Các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A}\  \cap B D = \ A \cap
\overline{B} không là hai biến cố xung khắc. Sai||Đúng

    c) P(\overline{A}) = 0,56; P(\overline{B}) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A: “Cây phát triển bình thường trên lô đất M”;

    B: “Cây phát triển bình thường trên lô đất N”.

    a) Các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A}\  \cap B D = \ A \cap
\overline{B} không là hai biến cố xung khắc. Sai||Đúng

    c) P(\overline{A}) = 0,56; P(\overline{B}) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    a) Do hai lô đất khác nhau. Nên các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Suy ra đúng.

    b) Do C \cap D = \overline{A}\  \cap
A\  \cap B \cap \overline{B} = \varnothing nên hai biến cố C, D xung khắc. Suy ra sai.

    c) Tacó: P(\overline{A}) = 1 – P(A) = 1 – 0,56 = 0,44;

    P(\overline{B}) = 1 – P(B) = l – 0,62 = 0,38. Suy ra sai.

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là:

    P(C \cup D) = P(C) + P(D) = P\left(
\overline{A}\  \right).P(B) + P(A).P\left( \overline{B} \right)

    = 0,44. 0,62 + 0,56.0,38 = 0,4856. Suy ra đúng.

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Có hai hộp đựng bóng giống nhau (khác màu sắc):

    Hộp thứ chứa 10 quả bóng trong đó có 9 quả màu đen.

    Hộp thứ hai chứa 20 quả bóng trng đó có 18 quả màu đen,

    Từ hộp thứ nhất lấy ngẫu nhiên một quả bóng bỏ sang hộp thứ hai. Tìm xác suất để lấy ngẫu nhiên một quả bóng từ hộp thứ hai được quả màu đen?

    Hướng dẫn:

    Gọi A là biến cố lấy được quả bóng màu đen từ hộp thứ hai.

    Biến cố A có thể xảy ra đòng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:

    H1 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai là màu đen.

    H2 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai không phải màu đen.

    Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai là quả bóng màu đen bằng: P\left( H_{1} ight) =
\frac{9}{10}

    Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai không phải quả bóng màu đen bằng: P\left( H_{2} ight) =
\frac{1}{10}

    Xác suất có điều kiện để từ hộp thứ hai lấy được quả bóng màu đen khi các giả thuyết H_{1};H_{2} xảy ra là:

    P\left( A|H_{1} ight) =
\frac{19}{21};P\left( A|H_{2} ight) = \frac{18}{21} =
\frac{6}{7}

    Do đó:

    P(A) = P\left( H_{1} ight).\left(
A|H_{1} ight) + P\left( H_{2} ight)P\left( A|H_{2}
ight)

    \Rightarrow P(A) =
\frac{9}{10}.\frac{19}{21} + \frac{1}{10}.\frac{6}{7} = 0,9

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó

    Hướng dẫn:

    Ta có: P(A) = P(B)P\left( \left. \ A
\right|B \right) + P\left( \overline{B} \right)P\left( \left. \ A
\right|\overline{B} \right)

  • Câu 13: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

    a) Số viên bi màu đỏ có đánh số là 30. Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: \frac{3}{5} Sai|| Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: \frac{7}{16}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

    a) Số viên bi màu đỏ có đánh số là 30. Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: \frac{3}{5} Sai|| Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: \frac{7}{16}. Đúng||Sai

    a) Số viên bi màu đỏ có đánh số là 60\%.50 = 30

    b) Số viên bi màu vàng không đánh số là 50\%.30 = 15

    c) Gọi A là biến cố “viên bi được lấy ra có đánh số”

    Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”

    Lúc này ta đi tính P(A) theo công thức: P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Ta có: \left\{ \begin{matrix}
  P\left( B ight) = \dfrac{{50}}{{80}} = \dfrac{5}{8} \Rightarrow P\left( {\overline B } ight) = 1 - \dfrac{5}{8} = \dfrac{3}{8} \hfill \\
  P\left( {A|B} ight) = 60\%  = \dfrac{3}{5} \hfill \\
  P\left( {A|\overline B } ight) = 100\%  - 50\%  = \dfrac{1}{2} \hfill \\ 
\end{matrix}  ight.

    \Rightarrow P(A) =
\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =
\frac{9}{16}.

    d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{9}{16} = \frac{7}{16}

  • Câu 14: Vận dụng
    Tính xác suất theo yêu cầu

    Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen A, B bằng phóng xạ. Xác suất đột biến của tính trạng do gen A0,4; do gen B là 0,5 và do cả hai gen là 0,9. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen A với xác suất 0,7 và lên gen B với xác suất 0,6?

    Hướng dẫn:

    Gọi C là biến cố có đột biến ở tính trạng đang xét

    A là biến cố phóng xạ tác dụng lên gen A

    B là biến cố phóng xạ tác dụng lên gen B

    C1 là biến cố phóng xạ chỉ tác động lên gen A

    C2 là biến cố phóng xạ chỉ tác dụng lên gen B

    C3 là biến cố phóng xạ tác dụng lên cả 2 gen

    C_{4} là biến cố phóng xạ không tác dụng lên gen nào

    Khi đó hệ C_{1},C_{2},C_{3},C_{4} là một hệ đầy đủ

    C_{1} = A\overline{\text{ }B},C_{2} =\overline{A}\text{ }B,C_{3} = AB,C_{4} = \overline{A}\overline{\text{}B}

    Mặt khác A;B độc lập nên 

    P\left( C_{1} ight) = P(\text{}A)P(\overline{\text{ }B}) = 0,28,P\left( C_{2} ight) =P(\overline{\text{ }A})P(\text{ }B) = 0,18

    P\left( C_{3} ight) = P(\text{}A)P(\text{ }B) = 0,42;P\left( C_{4} ight) = P(\overline{\text{}A})P(\overline{\text{ }B}) = 0,12

    Mặt khác P\left( C|C_{1} ight) =0,4;P\left( C|C_{2} ight) = 0,5;P\left( C|C_{3} ight) = 0,9P\left( C/C_{4} ight) = 0

    Theo công thức xác suất toàn phần ta có:

    P(C) = 0,28.0,4 + 0,18.0,5 + 0,42.0,9 +0,12.0 = 0,58

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là 0,5. Thống kê cho thấy 34\% cặp sinh đôi là trai; 30\% cặp sinh đôi là gái và 36\% cặp sinh đôi có giới tính khác nhau. Tỉ lệ cặp sinh đôi thật trong số các cặp sinh đôi có cùng giới tính.

    Hướng dẫn:

    Gọi A: “Nhận được cặp sinh đôi thật”

    B: “Nhận được cặp sinh đôi có cùng giới tính”

    Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên P\left( B|A ight) = 1

    Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên P\left( B|\overline{A}
ight) = P\left( \overline{B}|\overline{A} ight) =
\frac{1}{2}

    Do thống kê trên các cặp sinh đôi nhận được thì:

    P(B) = 0,3 + 0,34 = 0,64

    \Rightarrow P\left( \overline{B} ight)
= 1 - P(B) = 0,36

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A ight).P(A) +
P\left( B|\overline{A} ight).P\left( \overline{A} ight)

    = P\left( B|A ight).P(A) + P\left(
B|\overline{A} ight).\left\lbrack 1 - P(A) ightbrack

    Thay số ta xác định được P(A) =
0,28.

    Do công thức Bayes:

    P\left( A|B ight) = \frac{P\left( B|A
ight).P(A)}{P(B)} = \frac{0,28}{0,64} = 0,4375

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB, công thức tính xác suất toàn phần là

    Hướng dẫn:

    Ta có: P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

  • Câu 17: Vận dụng
    Chọn đáp án chính xác

    Cho hai hộp đựng các viên bi có cùng kích thước và khối lượng như sau:

    Hộp thứ nhất có 3 viên bi xanh và 6 viên vi đỏ.

    Hộp thứ hai có 3 viên vi xanh và 7 viên bi đỏ.

    Lấy ngẫu nhiên ra một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ngẫu nhiên đồng thời hai viên từ hộp thứ hai, biết rằng hai bi lấy ra từ hộp thứ hai là bi màu đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi màu đỏ.

    Hướng dẫn:

    Gọi A1: “Lấy ra một bi một màu xanh ở hộp thứ nhất”

    Và A2: “Lấy ra một bi một màu đỏ ở hộp thứ nhất”

    Nên A_{1};A_{2} là hệ biến cố đầy đủ

    Gọi B: “Hai bi lấy ra từ hộp thứ hai là màu đỏ”

    Ta có:

    P\left( A_{1} ight) =
\frac{C_{3}^{1}}{C_{9}^{1}} = \frac{1}{3};P\left( A_{2} ight) =
\frac{C_{6}^{1}}{C_{9}^{1}} = \frac{2}{3}

    P\left( B|A_{1} ight) =
\frac{C_{7}^{2}}{C_{11}^{2}} = \frac{21}{55};P\left( B|A_{2} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{28}{55}

    Áp dụng công thức xác suất toàn phần

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{21}{55} + \frac{2}{3}.\frac{28}{55} =
\frac{7}{15}

    Xác suất viên bi lấy ra từ hộp thứ nhất màu đỏ, biết rằng hai bi lấy ra từ hộp thứ hai màu đỏ, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \dfrac{P\left(B|A_{2} ight).P\left( A_{2} ight)}{P(B)} =\dfrac{\dfrac{28}{55}.\dfrac{2}{3}}{\dfrac{7}{15}} =\dfrac{8}{11}

  • Câu 18: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB với P(A) =
0,2; P(B) = 0,26; P\left( B|A \right) = 0,7. Tính P\left( A|B \right).

    Hướng dẫn:

    Ta có: P\left( A|B \right) =
\frac{P(A).P\left( B|A \right)}{P(B)} = \frac{0,2.0,7}{0,26} =
\frac{7}{13}.

  • Câu 19: Thông hiểu
    Tính xác suất P

    Có ba kiện hàng (mỗi kiện hàng có 20 sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là 18, 16, 12. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?

    Hướng dẫn:

    Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là các sản phẩm lấy ra đều tốt.

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Áp dụng công thức xác suất toàn phần ta có:

    P\left( A|A_{1} ight) =
\frac{18}{20}.\frac{18}{20}

    P\left( A|A_{2} ight) =
\frac{16}{20}.\frac{16}{20}

    P\left( A|A_{3} ight) =
\frac{12}{20}.\frac{12}{20}

    Từ đó ta có:

    P(A) = P\left( A_{1} ight).P\left(
A|A_{1} ight) + P\left( A_{2} ight).P\left( A|A_{2} ight) +
P\left( A_{3} ight).P\left( A|A_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{18}{20}.\frac{18}{20} +
\frac{1}{3}.\frac{16}{20}.\frac{16}{20} +
\frac{1}{3}.\frac{12}{20}.\frac{12}{20} = \frac{181}{300} \approx
0,6033

  • Câu 20: Nhận biết
    Tìm khẳng định sai

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1.

    Khi đó, công thức Bayes:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(B)P\left( A|B \right) + P\left( \overline{B}
\right)P\left( A|\overline{B} \right)}

    Hay còn có thể viết dưới dạng: P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(A)}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo